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Foreword

Everybody can be a data scientist. And everybody should be. This book shows 
you why everyone should be a data scientist and how you can get there. In 
today’s world, it should be embarrassing to make any complex decision with-
out understanding the available data first. Being a “data-driven organization” 
is the state of the art and often the best way to improve a business outcome 
significantly. Consequently we have seen a dramatic change with respect to the 
tools supporting us to get to this success quickly. It has only been a few years 
that building a data warehouse and creating reports or dashboards on top of 
the data warehouse has become the norm in larger organizations. Technologi-
cal advances have made this process easier than ever and in fact, the existence 
of data discovery tools have allowed business users to build dashboards them-
selves without the need for an army of Information Technology consultants 
supporting them in this endeavor. But now, after we have managed to effec-
tively answer questions based on our data from the past, a new paradigm shift 
is underway: Wouldn’t it be better to answer what is going to happen instead? 
This is the realm of advanced analytics and data science: moving your interest 
from the past to the future and optimizing the outcomes of your business 
proactively.

Here are some examples of this paradigm shift:

	 □	� Traditional Business Intelligence (BI) system and program answers: How 
many customers did we lose last year? Although certainly interesting, the 
answer comes too late: the customers are already gone and there is not 
much we can do about it. Predictive analytics will show you who will 
most likely churn within the next 10 days and what you can do best for each 
customer to keep them.

	 □	� Traditional BI answers: What campaign was the most successful in the past? 
Although certainly interesting, the answer will only provide limited 
value to determine what is the best campaign for your upcoming 
product. Predictive analytics will show you what will be the next best 
action to trigger a purchase action for each of your prospects individually.
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	 □	� Traditional BI answers: How often did my production stand still in the past 
and why? Although certainly interesting, the answer will not change the 
fact that profit was decreased due to suboptimal utilization. Predictive 
analytics will show you exactly when and why a part of a machine will 
break and when you should replace the parts instead of backlogging production 
without control.

Those are all high-value questions and knowing the answers has the potential 
to positively impact your business processes like nothing else. And the good 
news is that this is not science fiction; predicting the future based on data 
from the past and the inherent patterns living in the data is absolutely possible 
today. So why isn’t every company in the world exploiting this potential all day 
long? The answer is the data science skills gap.

Performing advanced analytics (predictive analytics, data mining, text ana-
lytics, and the necessary data preparation) requires, well, advanced skills. In 
fact, a data scientist is seen as a superstar programmer with a PhD in statis-
tics who just happens to understand every business problem in the world. Of 
course people with such a rare skill mix are very rare; in fact McKinsey has 
predicted a shortage of 1.8 million data scientists by the year 2018 only in 
the United States. This is a classical dilemma: we have identified the value of 
future-oriented questions and solving them with data science methods, but at 
the same time we can’t find the answers to those questions since we don’t have 
the people able to do so. The only way out of this dilemma is a democratization of 
advanced analytics. We need to empower more people to do create predictive 
models: business analysts, Excel power users, data-savvy business managers. 
We can’t transform this group of people magically into data scientists, but we 
can give them the tools and show them how to use them to act like a data 
scientist. This book can guide you in this direction.

We are in a time of modern analytics with “big data” fueling the explosion 
for the need of answers. It is important to understand that big data is not just 
about volume but also about complexity. More data means new and more 
complex infrastructures. Unstructured data requires new ways of storage and 
retrieval. And sometimes the data is generated so fast it should not be stored 
at all, but analyzed directly at the source and the findings stored instead. Real-
time analytics, stream mining, and the Internet of Things become a reality now. 
At the same time, it is also clear that we are in the midst of a sea change: data 
alone has no value, but the hidden patterns and insights in the data are an 
extremely valuable asset. Accessing this asset should no longer be an option 
for experts only but should be given into the hands of analytical practitioners 
and business managers of all kinds. This democratization of advanced analyt-
ics removes the bottleneck of data science and unleashes new business value 
in an instant.
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This transformation comes with a huge advantage for those who are actually 
data scientists. If business analysts, Excel power users, and data-savvy busi-
ness managers are empowered to solve 95% of their current advanced analytics 
problems on their own, it also frees up the scarce data scientist resources. This 
transition moves what has become analytical table stakes from data scientists 
to business analytics and leads to better results faster for the business. At the 
same time it allows data scientists to focus on new challenging tasks where the 
development of new algorithms is a must instead of reinventing the wheel over 
and over again.

We created RapidMiner with exactly this purpose in mind: empower nonex-
perts to get to the same findings as data scientists. Allow users to get to results 
and value much faster. And make deployment of those findings as easy as a 
single click. RapidMiner empowers the business analyst as well as the data sci-
entist to discover the hidden patterns and unleash new business value much 
faster. This unlocks the huge business value potential in the marketplace.  
I hope that Vijay’s and Bala’s book will be an important contribution to this 
change, supporting you to remove the data science bottleneck in your organi-
zation, and, last but not least, discovering a complete new field for you that 
delivers success and a bit of fun while discovering the unexpected.

Ingo Mierswa
CEO and Co-Founder, RapidMiner
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Preface

According to the technology consulting group Gartner, most emerging tech-
nologies go through what they term the “hype cycle.” This is a way of contrast-
ing the amount of hyperbole or hype versus the productivity that is engendered 
by the emerging technology. The hype cycle has three main phases: peak of 
inflated expectation, trough of disillusionment, and plateau of productivity. The third 
phase refers to the mature and value-generating phase of any technology. The 
hype cycle for predictive analytics (at the time of this writing) indicates that it 
is in this mature phase.

Does this imply that the field has stopped growing or has reached a satura-
tion point? Not at all. On the contrary, this discipline has grown beyond the 
scope of its initial applications in marketing and has advanced to applica-
tions in technology, Internet-based fields, health care, government, finance, 
and manufacturing. Therefore, whereas many early books on data mining and 
predictive analytics may have focused on either the theory of data mining or 
marketing-related applications, this book will aim to demonstrate a much 
wider set of use cases for this exciting area and introduce the reader to a host of 
different applications and implementations.

We have run out of adjectives and superlatives to describe the growth trends 
of data. Simply put, the technology revolution has brought about the need 
to process, store, analyze, and comprehend large volumes of diverse data in 
meaningful ways. The scale of data volume and variety places new demands 
on organizations to quickly uncover hidden trends and patterns. This is where 
data mining techniques have become essential. They are increasingly finding 
their way into the everyday activities of many business and government func-
tions, whether in identifying which customers are likely to take their business 
elsewhere, or mapping flu pandemic using social media signals.

Data mining is a class of techniques that traces its roots to applied statistics 
and computer science. The process of data mining includes many steps: fram-
ing the problem, understanding the data, preparing data, applying the right 
techniques to build models, interpreting the results, and building processes to 



xvi Preface

deploy the models. This book aims to provide a comprehensive overview of 
data mining techniques to uncover patterns and predict outcomes.

So what exactly does the book cover? Very broadly, it covers many important 
techniques that focus on predictive analytics, which is the science of converting 
future uncertainties to meaningful probabilities, and the much broader area 
of data mining (a slightly well-worn term). Data mining also includes what is 
called descriptive analytics. A little more than a third of this book focuses on 
the descriptive side of data mining and the rest focuses on the predictive side 
of data mining. The most common data mining tasks employed today are cov-
ered: classification, regression, association, and cluster analysis along with few 
allied techniques such as anomaly detection, text mining, and time series fore-
casting. This book is meant to introduce an interested reader to these exciting 
areas and provides a motivated reader enough technical depth to implement 
these technologies in their own business.

WHY THIS BOOK?
The objective of this book is twofold: to help clarify the basic concepts behind 
many data mining techniques in an easy-to-follow manner, and to prepare 
anyone with a basic grasp of mathematics to implement these techniques in 
their business without the need to write any lines of programming code. While 
there are many commercial data mining tools available to implement algo-
rithms and develop applications, the approach to solving a data mining prob-
lem is similar. We wanted to pick a fully functional, open source, graphical 
user interface (GUI)-based data mining tool so readers can follow the concepts 
and in parallel implement data mining algorithms. RapidMiner, a leading data 
mining and predictive analytics platform, fit the bill and thus we use it as a 
companion tool to implement the data mining algorithms introduced in every 
chapter. The best part of this tool is that it is also open source, which means 
learning data mining with this tool is virtually free of cost other than the time 
you invest.

WHO CAN USE THIS BOOK?
The content and practical use cases described in this book are geared towards 
business and analytics professionals who use data in everyday work settings. 
The reader of the book will get a comprehensive understanding of different 
data mining techniques that can be used for prediction and for discovering 
patterns, be prepared to select the right technique for a given data problem, 
and will be able to create a general purpose analytics process.
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We have tried to follow a logical process to describe this body of knowledge. 
Our focus has been on introducing about 20 or so key algorithms that are in 
widespread use today. We present these algorithms in following framework:

	 1.	 A high-level practical use case for each algorithm.
	 2.	� An explanation of how the algorithm works in plain language. Many 

algorithms have a strong foundation in statistics and/or computer 
science. In our descriptions, we have tried to strike a balance between 
being academically rigorous and being accessible to a wider audience 
who don’t necessarily have a mathematics background.

	 3.	� A detailed review of using RapidMiner to implement the algorithm, by 
describing the commonly used setup options. If possible, we expand the 
use case introduced at the beginning of the section to demonstrate the 
process by following a set format: we describe a problem, outline the 
objectives, apply the algorithm described in the chapter, interpret the 
results, and deploy the model. Finally, this book is neither a RapidMiner 
user manual nor a simple cookbook, although a recipe format is 
adopted for applications.

Analysts, finance, marketing, and business professionals, or anyone who ana-
lyzes data, most likely will use these advanced analytics techniques in their 
job either now or in the near future. For business executives who are one step 
removed from the actual analysis of data, it is important to know what is pos-
sible and not possible with these advanced techniques so they can ask the right 
questions and set proper expectations. While basic spreadsheet analyses and 
traditional slicing and dicing of data through standard business intelligence 
tools will continue to form the foundations of data exploration in business, 
especially for past data, data mining and predictive analytics are necessary to 
establish the full edifice of data analytics in business. Commercial data mining 
and predictive analytics software tools facilitate this by offering simple GUIs 
and by focusing on applications instead of on the inner workings of the algo-
rithms. Our key motivation is to enable the spread of predictive analytics and 
data mining to a wider audience by providing both conceptual framework and 
a practical “how-to” guide in implementing essential algorithms. We hope that 
this book will help with this objective.

Vijay Kotu
Bala Deshpande
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Predictive analytics is an area that has been growing in popularity in recent 
years. However, data mining, of which predictive analytics is a subset, has 
already reached a steady state in its popularity. In spite of this recent growth 
and popularity, the underlying science is at least 40 to 50 years old. Engineers 
and scientists have been using predictive models since at least the first moon 
project. Humans have always been forward-looking creatures and predictive 
sciences are a reflection of this curious nature.

So who uses predictive analytics and data mining today? Who are the big-
gest consumers? A third of the applications are centered on marketing 
(Rexer, 2013). This involves activities such as customer segmentation and 
profiling, customer acquisition, customer churn, and customer lifetime 
value management. Another third of the applications are driven by the 
banking, financial services and insurance (BFSI) industry, which uses data 
mining and predictive analytics for activities such as fraud detection and 
risk analysis. Finally the remaining third of applications are spread among 
various industries ranging from manufacturing to technology/Internet, 
medical-pharmaceutical, government, and academia. The activities range 
from traditional sales forecasting to product recommendations to election 
sentiment modeling.

While scientific and engineering applications of predictive modeling are based 
on applying principles of physics or chemistry to develop models, the kind of 
predictive models we describe in this book are built on empirical knowledge, 
more specifically, historical data. As our ability to collect, store, and process 
data has increased in sync with Moore’s Law, which implies that computing 
hardware capabilities double every two years, data mining has found increas-
ing applications in many diverse fields. However, researchers in the area of 
marketing pioneered much of the early work. Olivia Parr Rud, in her Data Min-
ing Cookbook (Parr Rud, 2001) describes an interesting anecdote on how back in 
the early 1990s building a logistic regression model took about 27 hours. More 
importantly, the process of predictive analytics had to be carefully orchestrated 
because a good chunk of model building work is data preparation. So she had 
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to spend a whole week getting her data prepped, and finally submitted the 
model to run on her PC with a 600MB hard disk over the weekend (while pray-
ing that there would be no crashes)! Technology has come a long way in less 
than 20 years. Today we can run logistic regression models involving hundreds 
of predictors with hundreds of thousands of records (samples) in a matter of 
minutes on a laptop computer.

The process of data mining, however, has not changed since those early days 
and is not likely to change much in the foreseeable future. To get meaningful 
results from any data, we will still need to spend a majority of effort prepar-
ing, cleaning, scrubbing, or standardizing the data before our algorithms can 
begin to crunch them. But what may change is the automation available to 
do this. While today this process is iterative and requires analysts’ awareness 
of best practices, very soon we may have smart algorithms doing this for us. 
This will allow us to focus on the most important aspect of predictive ana-
lytics: interpreting the results of the analysis to make decisions. This will also 
increase the reach of data mining to a broader cross section of analysts and 
business users.

So what constitutes data mining? Are there a core set of procedures and prin-
ciples one must master? Finally, how are the two terms—predictive analytics 
and data mining—different? Before we provide more formal definitions in the 
next section, it is interesting to look into the experiences of today’s data min-
ers based on current surveys (Rexer, 2013). It turns out that a vast majority 
of data mining practitioners today use a handful of very powerful techniques 
to accomplish their objectives: decision trees (Chapter 4), regression models 
(Chapter 5), and clustering (Chapter 7). It turns out that even here an 80/20 
rule applies: a majority of the data mining activity can be accomplished using 
relatively few techniques. However, as with all 80/20 rules, the long tail, which 
is made up of a large number of less-used techniques, is where the value lies, 
and for your needs, the best approach may be a relatively obscure technique or 
a combination of several not so commonly used procedures. Thus it will pay 
off to learn data mining and predictive analytics in a systematic way, and that 
is what this book will help you do.

1.1 � WHAT DATA MINING IS
Data mining, in simple terms, is finding useful patterns in the data. Being a 
buzzword, there are a wide variety of definitions and criteria for data mining. 
Data mining is also referred to as knowledge discovery, machine learning, and 
predictive analytics. However, each term has a slightly different connotation 
depending upon the context. In this chapter, we attempt to provide a general 
overview of data mining and point out its important features, purpose, taxon-
omy, and common methods.
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Data mining starts with data, which can range from a simple array of a few 
numeric observations to a complex matrix of millions of observations with thou-
sands of variables. The act of data mining uses some specialized computational 
methods to discover meaningful and useful structures in the data. These computa-
tional methods have been derived from the fields of statistics, machine learning, 
and artificial intelligence. The discipline of data mining coexists and is closely 
associated with a number of related areas such as database systems, data cleans-
ing, visualization, exploratory data analysis, and performance evaluation. We can 
further define data mining by investigating some its key features and motivation.

1.1.1 � Extracting Meaningful Patterns
Knowledge discovery in databases is the nontrivial process of identifying valid, 
novel, potentially useful, and ultimately understandable patterns or relation-
ships in the data to make important decisions (Fayyad et al., 1996) The term 
“nontrivial process” distinguishes data mining from straightforward statistical 
computations such as calculating the mean or standard deviation. Data min-
ing involves inference and iteration of many different hypotheses. One of the 
key aspects of data mining is the process of generalization of patterns from the 
data set. The generalization should be valid not just for the data set used to 
observe the pattern, but also for the new unknown data. Data mining is also a 
process with defined steps, each with a set of tasks. The term “novel” indicates 
that data mining is usually involved in finding previously unknown patterns 
in the data. The ultimate objective of data mining is to find potentially useful 
conclusions that can be acted upon by the users of the analysis.

1.1.2 � Building Representative Models
In statistics, a model is the representation of a relationship between variables 
in the data. It describes how one or more variables in the data are related 
to other variables. Modeling is a process in which a representative abstrac-
tion is built from the observed data set. For example, we can develop a model 
based on credit score, income level, and requested loan amount, to determine 
the interest rate of the loan. For this task, we need previously known observa-
tional data with the credit score, income level, loan amount, and interest rate.  
Figure 1.1 shows the inputs and output of the model. Once the representative 
model is created, we can use it to predict the value of the interest rate, based on 
all the input values (credit score, income level, and loan amount).

In the context of predictive analytics, data mining is the process of building the 
representative model that fits the observational data. This model serves two 
purposes: on the one hand it predicts the output (interest rate) based on the 
input variables (credit score, income level, and loan amount), and on the other 
hand we can use it to understand the relationship between the output variable 
and all the input variables. For example, does income level really matter in 
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determining the loan interest rate? Does income level matter more than credit 
score? What happens when income levels double or if credit score drops by 
10 points? Model building in the context of data mining can be used in both 
predictive and explanatory applications.

1.1.3 � Combination of Statistics, Machine Learning,  
and Computing

In the pursuit of extracting useful and relevant information from large data sets, 
data mining derives computational techniques from the disciplines of statistics, 
artificial intelligence, machine learning, database theories, and pattern recog-
nition. Algorithms used in data mining originated from these disciplines, but 
have since evolved to adopt more diverse techniques such as parallel comput-
ing, evolutionary computing, linguistics, and behavioral studies. One of the key 
ingredients of successful data mining is substantial prior knowledge about the 
data and the business processes that generate the data, known as subject matter  
expertise. Like many quantitative frameworks, data mining is an iterative process 
in which the practitioner gains more information about the patterns and rela-
tionships from data in each cycle. The art of data mining combines the knowl-
edge of statistics, subject matter expertise, database technologies, and machine 
learning techniques to extract meaningful and useful information from the data. 
Data mining also typically operates on large data sets that need to be stored, 
processed, and computed. This is where database techniques along with parallel 
and distributed computing techniques play an important role in data mining.

1.1.4 � Algorithms
We can also define data mining as a process of discovering previously unknown 
patterns in the data using automatic iterative methods. Algorithms are iterative 
step-by-step procedure to transform inputs to output. The application of sophis-
ticated algorithms for extracting useful patterns from the data differentiates 
data mining from traditional data analysis techniques. Most of these algorithms 
were developed in recent decades and have been borrowed from the fields of 

FIGURE 1.1
Representative model for Predictive Analytics.
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machine learning and artificial intelligence. However, some of the algorithms 
are based on the foundations of Bayesian probabilistic theories and regression 
analysis, originated hundreds of years ago. These iterative algorithms automate 
the process of searching for an optimal solution for a given data problem. 
Based on the data problem, data mining is classified into tasks such as classifi-
cation, association analysis, clustering, and regression. Each data mining task 
uses specific algorithms like decision trees, neural networks, k-nearest neigh-
bors, k-means clustering, among others. With increased research on data min-
ing, the number of such algorithms is increasing, but a few classic algorithms 
remain foundational to many data mining applications.

1.2 � WHAT DATA MINING IS NOT
While data mining covers a wide set of techniques, applications, and disci-
plines, not all analytical and discovery methods are considered data mining 
processes. Data mining is usually applied, though not limited to, large data 
sets. Data mining also goes through a defined process of exploration, prepro-
cessing, modeling, evaluation, and knowledge extraction. Here are some com-
monly used data discovery techniques that are not considered data mining, 
even if they operate on large data sets:

	 n	� Descriptive statistics: Computing mean, standard deviation, and other 
descriptive statistics quantify the aggregate structure of a data set. This is 
essential information to understand any data set, but calculating these 
statistics is not considered a data mining technique. However, they are 
used in the exploration stage of the data mining process.

	 n	� Exploratory visualization: The process of expressing data in visual 
coordinates enables users to find patterns and relationships in the data 
and comprehend large data sets. Similar to descriptive statistics, they are 
integral in the preprocessing and postprocessing steps in data mining.

	 n	� Dimensional slicing: Business intelligence and online analytical 
processing (OLAP) applications, which are prevalent in business 
settings, mainly provide information on the data through dimensional 
slicing, filtering ,and pivoting. OLAP analysis is enabled by a unique 
database schema design where the data is organized as dimensions  
(e.g., Products, Region, Date) and quantitative facts or measures (e.g.,  
Revenue, Quantity). With a well-defined database structure, it is easy 
to slice the yearly revenue by products or combination of region and 
products. While these techniques are extremely useful and may provide 
patterns in data (e.g., Candy sales decline after Halloween in the United 
States), this is considered information retrieval and not data mining.

	 n	� Hypothesis testing: In confirmatory data analysis, experimental data 
is collected to evaluate whether a hypothesis has enough evidence 
to support it or not. There are many types of statistical testing and 
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they have a wide variety of business applications (e.g., A/B testing in 
marketing). In general, data mining is a process where many hypotheses 
are generated and tested based on observational data. Since the data 
mining algorithms are iterative, we can refine the solution in each step.

	 n	� Queries: Information retrieval systems, like web search engines, use data 
mining techniques like clustering to index vast repositories of data. But 
the act of querying and rendering of the result is not considered a data 
mining process. Query retrieval from databases and slicing and dicing of 
data are not generally considered data mining (Tan et al., 2005).

All of the above techniques are used in the steps of a data mining process and 
are used in conjunction with the term “data mining.” It is important for the 
practitioner to know what makes up a complete data mining process. We will 
discuss the specific steps of a data mining process in the next chapter.

1.3 � THE CASE FOR DATA MINING
In the past few decades, we have seen a massive accumulation of data with 
the advancement of information technology, connected networks and 
businesses it enables. This trend is also coupled with steep decline in the 
cost of data storage and data processing. The applications built on these 
advancements like online businesses, social networking, and mobile tech-
nologies unleash a large amount of complex, heterogeneous data that are 
waiting to be analyzed. Traditional analysis techniques like dimensional 
slicing, hypothesis testing, and descriptive statistics can only get us so far 
in information discovery. We need a paradigm to manage massive vol-
ume of data, explore the interrelationships of thousands of variables, and 
deploy machine learning algorithms to deduce optimal insights from the 
data set. We need a set of frameworks, tools, and techniques to intelligently 
assist humans to process all these data and extract valuable information  
(Piatetsky-Shapiro et al., 1996). Data Mining is one such paradigm that  
can handle large volumes with multiple attributes and deploy complex 
algorithms to search for patterns from the data. Let’s explore each key moti-
vation for using data mining techniques.

1.3.1 � Volume
The sheer volume of data captured by organizations is exponentially increas-
ing. The rapid decline in storage costs and advancements in capturing every 
transaction and event, combined with the business need to extract all possible 
leverage using data, creates a strong motivation to store more data than ever. A 
study by IDC Corporation in 2012 reported that the volume of recorded digital 
data by 2012 reached 2.8 zettabytes, and less than 1% of the data are currently 
analyzed (Reinsel, December 2012). As data becomes more granular, the need 
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for using large volume data to extract information increases. A rapid increase in 
the volume of data exposes the limitations of current analysis methodologies. 
In a few implementations, the time to create generalization models is quite 
critical and data volume plays a major part in determining the time to devel-
opment and deployment.

1.3.2 � Dimensions
The three characteristics of the Big Data phenomenon are high volume, high 
velocity, and high variety. Variety of data relates to multiple types of values 
(numerical, categorical), formats of data (audio files, video files), and appli-
cation of data (location coordinates, graph data). Every single record or data 
point contains multiple attributes or variables to provide context for the 
record. For example, every user record of an ecommerce site can contain attri-
butes such as products viewed, products purchased, user demographics, fre-
quency of purchase, click stream, etc. Determining what is the most effective 
offer an ecommerce user will respond to can involve computing information 
along all these attributes. Each attribute can be thought as a dimension in the 
data space. The user record has multiple attributes and can be visualized in 
multidimensional space. Addition of each dimension increases the complexity 
of analysis techniques.

A simple linear regression model that has one input dimension is relatively 
easier to build than multiple linear regression models with multiple dimen-
sions. As the dimensional space of the data increases, we need an adaptable 
framework that can work well with multiple data types and multiple attributes. 
In the case of text mining, a document or article becomes a data point with 
each unique word as a dimension. Text mining yields a data set where the 
number of attributes ranges from a few hundred to hundreds of thousands of 
attributes.

1.3.3 � Complex Questions
As more complex data are available for analysis, the complexity of information 
that needs to get extracted from the data is increasing as well. If we need to 
find the natural clusters in a data set with hundreds of dimensions, traditional 
analysis like hypothesis testing techniques cannot be used in a scalable fash-
ion. We need to leverage machine-learning algorithms to automate searching 
in the vast search space.

Traditional statistical analysis approaches a data analysis problem by assum-
ing a stochastic model to predict a response variable based on a set of input 
variables. Linear regression and logistic regression analysis are classic examples 
of this technique where the parameters of the model are estimated from the 
data. These hypothesis-driven techniques were highly successful in modeling 
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simple relationships between response and input variables. However, there is 
a significant need to extract nuggets of information from large, complex data 
sets, where the use of traditional statistical data analysis techniques is limited 
(Breiman, 2001)

Machine learning approach the problem of modeling by trying to find an 
algorithmic model that can better predict the output from input variables. 
The algorithms are usually recursive and in each cycle estimate the output and 
“learn” from the predictive errors of previous steps. This route of modeling 
greatly assists in exploratory analysis since the approach here is not validating 
a hypothesis but generating a multitude of hypotheses for a given problem. In 
the context of the data problems we face today, we need to deploy both tech-
niques. John Tuckey, in his article “We need both exploratory and confirma-
tory,” stresses the importance of both exploratory and confirmatory analysis 
techniques (Tuckey, 1980). In this book, we discuss a range of data mining 
techniques, from traditional statistical modeling techniques like regressions 
to machine-learning algorithms.

1.4 � TYPES OF DATA MINING
Data mining problems can be broadly categorized into supervised or unsuper-
vised learning models. Supervised or directed data mining tries to infer a func-
tion or relationship based on labeled training data and uses this function to 
map new unlabeled data. Supervised techniques predict the value of the out-
put variables based on a set of input variables. To do this, a model is developed 
from a training data set where the values of input and output are previously 
known. The model generalizes the relationship between the input and out-
put variables and uses it to predict for the data set where only input variables 
are known. The output variable that is being predicted is also called a class 
label or target variable. Supervised data mining needs a sufficient number of 
labeled records to learn the model from the data. Unsupervised or undirected 
data mining uncovers hidden patterns in unlabeled data. In unsupervised data 
mining, there are no output variables to predict. The objective of this class of 
data mining techniques is to find patterns in data based on the relationship 
between data points themselves. An application can employ both supervised 
and unsupervised learners.

Data mining problems can also be grouped into classification, regression, 
association analysis, anomaly detection, time series, and text mining tasks  
(Figure 1.2). This book is organized around these data mining tasks. We pres-
ent an overview of the types of data mining in this chapter and will provide 
an in-depth discussion of concepts and step-by-step implementations of many 
important techniques in the following chapters.
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Classification and regression techniques predict a target variable based on input 
variables. The prediction is based on a generalized model built from a previ-
ously known data set. In regression tasks, the output variable is numeric (e.g., the 
mortgage interest rate on a loan). Classification tasks predict output variables, 
which are categorical or polynomial (e.g., the yes or no decision to approve a 
loan). Clustering is the process of identifying the natural groupings in the data 
set. For example, clustering is helpful in finding natural clusters in customer  
data sets, which can be used for market segmentation. Since this is unsupervised 
data mining, it is up to the end user to investigate why these clusters are formed 
in the data and generalize the uniqueness of each cluster. In retail analytics, it is 
common to identify pairs of items that are purchased together, so that specific 
items can be bundled or placed next to each other. This task is called market bas-
ket analysis or association analysis, which is commonly used in recommendation 
engines.

Anomaly or outlier detection identifies the data points that are significantly 
different from other data points in the data set. Credit card transaction fraud 
detection is one of the most prolific applications of anomaly detection. Time 
series forecasting can be either a special use of regression modeling (where  
models predict the future value of a variable based on the past value of the 
same variable) or a sophisticated averaging or smoothing technique (for exam-
ple, daily weather prediction based on the past few years of daily data).

Text Mining is a data mining application where the input data is text, which  
can be in the form of documents, messages, emails, or web pages. To aid the 
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FIGURE 1.2
Data mining tasks.
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data mining on text data, the text files are converted into document vectors 
where each unique word is considered an attribute. Once the text file is con-
verted to document vectors, standard data mining tasks such as classification, 
clustering, etc. can be applied on text files. The Feature selection is a process in 
which attributes in a data set is reduced to a few attributes that really matter.

A complete data mining application can contain elements of both supervised 
and unsupervised techniques. Unsupervised techniques provide an increased 
understanding of the data set and hence are sometimes called descriptive data 
mining. As an example of how both unsupervised and supervised data mining 
can be combined in an application, consider the following scenario. In mar-
keting analytics, clustering can be used to find the natural clusters in customer 
records. Each customer is assigned a cluster label at the end of the clustering 
process. A labeled customer data set can now be used to develop a model that 
assigns a cluster label for any new customer record with a supervised classifi-
cation technique.

1.5 � DATA MINING ALGORITHMS
An algorithm is a logical step-by-step procedure for solving a problem. In data 
mining, it is the blueprint for how a particular data problem is solved. Many of the 
algorithms are recursive, where a set of steps are repeated many times until a limit-
ing condition is met. Some algorithms also contain a random variable as an input, 
and are aptly called randomized algorithms. A data mining classification task can 
be solved using many different approaches or algorithms such as decision trees, 
artificial neural networks, k-nearest neighbors (k-NN), and even some regression 
algorithms. The choice of which algorithm to use depends on the type of data set, 
objective of the data mining, structure of the data, presence of outliers, available 
computational power, number of records, number of attributes, and so on. It is up 
to the data mining practitioner to make a decision about what algorithm(s) to use 
by evaluating the performance of multiple algorithms. There have been hundreds 
of algorithms developed in the last few decades to solve data mining problems. In 
the next few chapters, we will discuss the inner workings of the most important 
and diverse data mining algorithms and their implementations.

Data mining algorithms can be implemented by custom-developed computer 
programs in almost any computer language. This obviously is a time-consuming  
task. In order for us to focus our time on data and algorithms, we can 
leverage data mining tools or statistical programing tools, like R, Rapid-
Miner, SAS Enterprise Miner, IBM SPSS, etc., which can implement these 
algorithms with ease. These data mining tools offer a library of algorithms 
as functions, which can be interfaced through programming code or config-
uration through graphical user interfaces. Table 1.1 provides a summary of 
data mining tasks with commonly used algorithmic techniques and exam-
ple use cases.
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1.6 � ROADMAP FOR UPCOMING CHAPTERS
It’s time to explore data mining and predictive analytics techniques in more 
detail. In the next couple of chapters, we provide an overview of the data min-
ing process and data exploration techniques. The following chapters present 
the main body of this book: the concepts behind each predictive analytics or 
descriptive data mining algorithm and a practical use case (or two) for each. You 
don’t have to read the chapters in a sequence. We have organized this book in 
such a way that you can directly start reading about the data mining tasks and 
algorithms you are most interested in. Within each chapter focused on a tech-
nique (e.g., decision tree, k-means clustering), we start with a general overview, 
and then present the concepts and the logic of the algorithm and how it works 
in plain language. Later we show how the algorithm can be implemented using 
RapidMiner. RapidMiner is a widely known and used software tool for data min-
ing and predictive analytics (Piatetsky, 2014) and we have chosen it particularly 
for ease of implementation using GUI and it is a open source data mining tool. 
We conclude each chapter with some closing thoughts and list further reading 
materials and references. Here is a roadmap of the book.

Table 1.1  Data Mining Tasks and Examples

Tasks Description Algorithms Examples

Classification Predict if a data point belongs to 
one of the predefined classes. 
The prediction will be based on 
learning from a known data set.

Decision trees, neural 
networks, Bayesian models, 
induction rules, k-nearest 
neighbors

Assigning voters into known 
buckets by political parties, 
e.g., soccer moms
Bucketing new customers 
into one of the known cus-
tomer groups

Regression Predict the numeric target label 
of a data point. The prediction 
will be based on learning from a 
known data set.

Linear regression, logistic 
regression

Predicting unemployment 
rate for next year
Estimating insurance pre-
mium

Anomaly detection Predict if a data point is an outlier 
compared to other data points in 
the data set.

Distance based, density 
based, local outlier factor 
(LOF)

Fraud transaction detection 
in credit cards
Network intrusion detection

Time series Predict the value of the target 
variable for a future time frame 
based on historical values.

Exponential smoothing, 
autoregressive integrated 
moving average (ARIMA), 
regression

Sales forecasting, produc-
tion forecasting, virtually any 
growth phenomenon that 
needs to be extrapolated

Clustering Identify natural clusters within the 
data set based on inherit proper-
ties within the data set.

k-means, density-based 
clustering (e.g., density- 
based spatial clustering 
of applications with noise 
[DBSCAN])

Finding customer segments 
in a company based on 
transaction, web, and cus-
tomer call data

Association 
analysis

Identify relationships within an 
item set based on transaction 
data.

Frequent Pattern Growth 
(FP-Growth) algorithm, Apri-
ori algorithm

Find cross-selling opportu-
nities for a retailer based on 
transaction purchase history
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1.6.1 � Getting Started with Data Mining
Successfully uncovering patterns in a data set is an iterative process. Chapter 2 
Data Mining Process provides a framework to solve data mining problems. A 
five-step process outlined in this chapter provides guidelines on gathering sub-
ject matter expertise; exploring the data with statistics and visualization; build-
ing a model using data mining algorithms; testing the model and deploying 
in production environment; and finally reflecting on new knowledge gained 
in the cycle.

A simple data exploration either visually or with the help of basic statistical 
analysis can sometimes answer seemingly tough questions meant for data 
mining. Chapter 3 Data Exploration covers some of the basic tools used in 
knowledge discovery before deploying data mining techniques. These practical 
tools increase one’s understanding of the data and are quite essential in under-
standing the results of data mining process.

1.6.2 � An Interlude…
Before we dive into the key data mining techniques and algorithms, we want 
to point out two specific things regarding how you can implement Data Min-
ing algorithms while reading this book. We believe learning the concepts 
and implementation immediately after enhances the learning experience. 
All of the predictive modeling and data mining algorithms explained in the 
following chapters are implemented in RapidMiner. First, we recommend 
that you download the free version of RapidMiner software from http://www.
rapidminer.com (if you have not done so already) and second, review the 
first couple of sections of Chapter 13 Getting Started with RapidMiner to 
familiarize yourself with the features of the tool, its basic operations, and 
the user interface functionality. Acclimating with RapidMiner will be helpful 
while using the algorithms that are discussed in the following chapters. This 
chapter is set at the end of the book because some of the later sections in the 
chapter build upon the material presented in the chapters on algorithms; 
however the first few sections are a good starting point for someone who is 
not yet familiar with the tool.

Each chapter has a data set we use to describe the 
concept of a particular data mining task and in most cases 
the same data set is used for implementation. Step-by-
step instructions on practicing data mining on the data 
set are covered in every algorithm that is discussed in the 
upcoming chapters. All the implementations discussed 

in the book are available at the companion website of the 
book at www.LearnPredictiveAnalytics.com.  
Though not required, we encourage you to access these 
files to aid your learning. You can download the data 
set, complete RapidMiner processes (*.rmp files), and 
many more relevant electronic files from this website.

http://www.rapidminer.com/
http://www.rapidminer.com/
http://www.learnpredictiveanalytics.com/
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1.6.3 � The Main Event: Predictive Analytics and Data Mining 
Algorithms

Classification is the most widely used data mining task in businesses. As a 
predictive analytics task, the objective of a classification model is to pre-
dict a target variable that is binary (e.g., a loan decision) or categorical 
(e.g., a customer type) when a set of input variables are given (e.g., credit 
score, income level, etc.). The model does this by learning the generalized 
relationship between the predicted target variable with all other input attri-
butes from a known data set. There are several ways to skin this cat. Each 
algorithm differs by how the relationship is extracted from the known data, 
called a “training” data set. Chapter 4 on classification addresses several of 
these methods.

	 n	� Decision trees approach the classification problem by partitioning the 
data into “purer” subsets based on the values of the input attributes. 
The attributes that help achieve the cleanest levels of such separation are 
considered significant in their influence on the target variable and end 
up at the root and closer-to-root levels of the tree. The output model is 
a tree framework than can be used for the prediction of new unlabeled 
data.

	 n	� Rule induction is a data mining process of deducing IF-THEN rules from 
a dataset or from decision trees. These symbolic decision rules explain 
an inherent relationship between the attributes and labels in the data 
set that can be easily understood by everyone.

	 n	� Naïve Bayesian algorithms provide a probabilistic way of building 
a model. This approach calculates the probability for each value of 
the class variable for given values of input variables. With the help 
of conditional probabilities, for a given unknown record, the model 
calculates the outcome of all values of target classes and comes up with 
a predicted winner.

	 n	� Why go through the trouble of extracting complex relationships from 
the data when we can just memorize entire training data set and pretend 
we have generalized the relationship? This is exactly what the k-nearest 
neighbor algorithm does, and it is therefore called a “lazy” learner where 
the entire training data set is memorized as the model.

	 n	� Neurons are the nerve cells that connect with each other to form 
a biological neural network. The working of these interconnected 
nerve cells inspired the solution of some complex data problems 
by the creation of artificial neural networks. The neural networks 
section provides a conceptual background of how a simple neural 
network works and how to implement one for any general prediction 
problem.
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	 n	� Support vector machines (SVMs) were developed to address optical 
character recognition problems: how can we train an algorithm to detect 
boundaries between different patterns and thus identify characters? 
SVMs can therefore identify if a given data sample belongs within a 
boundary (in a particular class) or outside it (not in the class).

	 n	� Ensemble learners are “meta” models where the model is a combination 
of several different individual models. If certain conditions are met, 
ensemble learners can gain from the wisdom of crowds and greatly 
reduce the generalization error in data mining.

The simple mathematical equation y = ax + b is a linear regression model. 
Chapter 5 Regression Methods describes a class of predictive analytics tech-
niques in which the target variable (e.g., interest rate or a target class) is func-
tionally related to input variables.

	 n	� Linear regression: The simplest of all function fitting models is based 
on a linear equation, as mentioned above. Polynomial regression 
uses higher-order equations. No matter what type of equation is 
used, the goal is to represent the variable to be predicted in terms 
of other variables or attributes. Further, the predicted variable and 
the independent variables all have to be numeric for this to work. 
We explore the basics of building regression models and show how 
predictions can be made using such models.

	 n	� Logistic regression: It addresses the issue of predicting a target variable 
that may be binary or binomial (such as 1 or 0, yes or no) using 
predictors or attributes, which may be numeric.

Supervised data mining or predictive analytics predict the value of the target 
variables. In the next two chapters, we review two important unsupervised data 
mining tasks: Association analysis in Chapter 6 and Clustering in Chapter 7. Ever 
heard of the beer and diaper association in supermarkets? Apparently, a super-
market discovered that customers who buy diapers also tend to buy beer. While 
this may have been an urban legend, the observation has become a poster child 
for association analysis. Associating an item in a transaction with another item 
in the transaction to determine the most frequently occurring patterns is termed 
association analysis. This technique is about, for example, finding relationships 
between products in a supermarket based on purchase data, or finding related 
web pages in a website based on click stream data. This data mining application 
is widely used in retail, ecommerce, and media to creatively bundle products.

Clustering is the data mining task of identifying natural groups in the data. For an 
unsupervised data mining task, there is no target class variable to predict. After 
the clustering is performed, each record in the data set is associated with one 
or more cluster. Widely used in marketing segmentations and text mining, clus-
tering can be performed by a wide range of algorithms. In Chapter 7, we will 
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discuss three common algorithms with diverse identification approaches. The 
k-means clustering technique identifies a cluster based on a central prototype 
record. DBSCAN clustering partitions the data based on variation in the density 
of records in a data set. Self-organizing maps (SOM) create a two-dimensional grid 
where all the records related with each other are placed next to each other.

How do we determine which algorithms work best for a given data set? 
Or for that matter how do we objectively quantify the performance of any 
algorithm on a data set? These questions are addressed in Chapter 8 Model 
Evaluation, which covers performance evaluation. We describe the most 
commonly used tools for evaluating classification models such as a confu-
sion matrix, ROC curves, and lift charts.

1.6.4 � Special Applications
Chapter 9 Text Mining provides a detailed look into the emerging area of text 
mining and text analytics. It starts with a background on the origins of text min-
ing and provides the motivation for this fascinating topic using the example of 
IBM’s Watson, the Jeopardy!-winning computer program that was built almost 
entirely using concepts from text and data mining. The chapter introduces some 
key concepts important in the area of text analytics such as term frequency–
inverse document frequency (TF-IDF) scores. Finally it describes two hands-on 
case studies in which the reader is shown how to use RapidMiner to address 
problems like document clustering and automatic gender classification based 
on text content.

Forecasting is a very common application of time series analysis. Companies 
use sales forecasts, budget forecasts, or production forecasts in their planning 
cycles. Chapter 10 on Time Series Forecasting starts by pointing out the clear 
distinction between standard supervised predictive models and time series 
forecasting models. It provides a basic introduction to the different time series 
methods ranging from data-driven moving averages to exponential smooth-
ing, and model-driven forecasts including polynomial regression and lag-series 
based ARIMA methods.

Chapter 11 on Anomaly Detection describes how outliers in data can be detected 
by combining multiple data mining tasks like classification, regression, and cluster-
ing. The fraud alert received from credit card companies is the result of an anomaly 
detection algorithm. The target variable to be predicted is whether a transaction is 
an outlier or not. Since clustering tasks identify outliers as a cluster, distance-based 
and density-based clustering techniques can be used in anomaly detection tasks.

In predictive analytics, the objective is to develop a representative model to 
generalize the relationship between input attributes and target attributes, 
so that we can predict the value or class of the target variables. Chapter 12 
introduces a preprocessing step that is often critical for a successful predictive 
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modeling exercise: feature selection. Feature selection is known by several alter-
native terms such as attribute weighting, dimension reduction, and so on. 
There are two main styles of feature selection: filtering the key attributes before 
modeling (filter style) or selecting the attributes during the process of model-
ing (wrapper style). We discuss a few filter-based methods such as principal 
component analysis (PCA), information gain, and chi-square, and a couple of 
wrapper-type methods like forward selection and backward elimination. Even 
in just one data mining algorithm, there are many different ways to tweak the 
parameters and even the sampling for training data set.

If you are not familiar with RapidMiner, the first few sections of Chapter 13 
Getting Started with RapidMiner should provide a good overview, while the 
latter sections of this chapter discuss some of the commonly used productiv-
ity tools and techniques such as data transformation, missing value handling, 
and process optimizations using RapidMiner. As mentioned earlier, while each 
chapter is more or less independent, some of the concepts in Chapters 8 Model 
Evaluation and later build on the material from earlier chapters and for begin-
ners we recommend going in order. However, if you are familiar with the stan-
dard terminology and with RapidMiner, you are not constrained to move in 
any fashion.
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CHAPTER 2

The methodological discovery of useful relationships and patterns in data 
is enabled by a set of iterative activities known as data mining process. The 
standard data mining process involves (1) understanding the problem,  
(2) preparing the data samples, (3) developing the model, (4) applying 
the model on a data set to see how the model may work in real world, and  
(5) production deployment. Over the years of evolution of data mining prac-
tices, different frameworks for the data mining process have been put forward 
by various academic and commercial bodies. In this chapter, we will discuss 
the key steps involved in building a successful data mining solution. The 
framework we put forward in this chapter is synthesized from a few data min-
ing frameworks, and is explained using a simple example data set. This chapter 
serves as a high-level roadmap in building deployable data mining models, 
and discusses the challenges faced in each step, as well as important consider-
ations and pitfalls to avoid. Most of the concepts discussed in this chapter are 
reviewed later in the book with detailed explanations and examples.

One of the most popular data mining process frameworks is CRISP-DM, which 
is an acronym for Cross Industry Standard Process for Data Mining. This frame-
work was developed by a consortium of many companies involved in data 
mining (Chapman et  al., 2000). The CRISP-DM process is the most widely 
adopted framework for developing data mining solutions. Figure 2.1 provides 
a visual overview of the CRISP-DM framework. Other data mining frameworks 
are SEMMA, which is an acronym for Sample, Explore, Modify, Model, and 
Assess, developed by the SAS Institute (SAS Institute, 2013); DMAIC, which is 
an acronym for Define, Measure, Analyze, Improve and Control, used in Six 
Sigma practice (Kubiak & Benbow, 2005); and the Selection, Preprocessing, 
Transformation, Data Mining, Interpretation, and Evaluation framework used 
in the knowledge discovery in databases (KDD) process (Fayyad et al., 1996). 
We feel all these frameworks exhibit common characteristics and hence we will 
be using a generic framework closely resembling the CRISP process. As with 
any process framework, a data mining process recommends the performance 
of a certain set of tasks to achieve optimal output. The process of extracting 
information from the data is iterative. The steps within the data mining process 

Data Mining Process
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are not linear and have many loops, going back and forth between steps and at 
times going back to the first step to redefine data mining problem statement.

The data mining process presented in Figure 2.2 is a generic set of steps that is 
business, algorithm, and, data mining tool agnostic. The fundamental objective 
of any process that involves data mining is to address the analysis question. The 
problem at hand could be segmentation of customers or predicting climate 
patterns or a simple data exploration. The algorithm used to solve the busi-
ness question could be automated clustering or an artificial neural network. 
The software tools to develop and implement the data mining algorithm used 
could be custom coding, IBM SPSS, SAS, R, or RapidMiner, to mention a few.

Data mining, specifically in the context of big data, has gained a lot of importance 
in the last few years. Perhaps the most visible and discussed part of data mining 
is the third step: modeling. It involves building representative models that can be 
derived from the sample data set and can be used for either predictions (predictive 
modeling) or for describing the underlying pattern in the data (descriptive or explan-
atory modeling). Rightfully so, there is plenty of academic and business research in 
this step and we have dedicated most of the book to discussing various algorithms 
and quantitative foundations that go with it. We specifically wish to emphasize 
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FIGURE 2.1
CRISP data mining framework.
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considering data mining as an end-to-end, multistep, iterative process instead of 
just a model building step. Seasoned data mining practitioners can attest to the fact 
that the most time-consuming part of the overall data mining process is not the 
model building part, but the preparation of data, followed by data and business 
understanding. There are many data mining tools, both open source and com-
mercial, available in the market that can automate the model building. The most 
commonly used tools are RapidMiner, R, Weka, SAS, SPSS, Oracle Data Miner, 
Salford, Statistica, etc. (Piatetsky, 2014). Asking the right business questions, gain-
ing in-depth business understanding, sourcing and preparing the data for the data 
mining task, mitigating implementation considerations, and, most useful of all, 
gaining knowledge from the data mining process, remains crucial to the success 
of the data mining process. Lets get started with Step 1: Framing the data mining 
question and understanding the context.

2.1 � PRIOR KNOWLEDGE
Prior knowledge refers to information that is already known about a subject. 
The objective of data mining doesn’t emerge in isolation; it always develops 
on top of existing subject matter and contextual information that is already 
known. The prior knowledge step in the data mining process helps to define 
what problem we are solving, how it fits in the business context, and what data 
we need to solve the problem.

FIGURE 2.2
Data mining process.
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2.1.1 � Objective
The data mining process starts with an analysis need, a question or a business 
objective. This is possibly the most important step in the data mining pro-
cess (Shearer, 2000). Without a well-defined statement of the problem, it is 
impossible to come up with the right data set and pick the right data mining 
algorithm. Even though the data mining process is a sequential process and it 
is common to go back to previous steps and revise the assumptions, approach, 
and tactics. It is imperative to get the objective of the whole process right, even 
if it is exploratory data mining.

We are going to explain the data mining process using an hypothetical example. 
Let’s assume we are in the consumer loan business, where a loan is provisioned 
for individuals with the collateral of assets like a home or car, i.e., a mortgage or 
an auto loan. As many home owners know, an important component of the loan, 
for the borrower and the lender, is the interest rate at which the borrower repays 
the loan on top of the principal. The interest rate on a loan depends on a gamut 
of variables like the current federal funds rate as determined by the central bank, 
borrower’s credit score, income level, home value, initial deposit (down payment) 
amount, current assets and liabilities of the borrower, etc. The key factor here is 
whether the lender sees enough reward (interest on the loan) for the risk of losing 
the principal (borrower’s default on the loan). In an individual case, the status of 
default of a loan is Boolean; either one defaults or not, during the period of the 
loan. But, in a group of tens of thousands of borrowers, we can find the default 
rate—a continuous numeric variable that indicates the percentage of borrowers 
who default on their loans. All the variables related to the borrower like credit 
score, income, current liabilities, etc. are used to assess the default risk in a related 
group; based on this, the interest rate is determined for a loan. The business objec-
tive of this hypothetical use case is: If we know the interest rate of past borrowers with 
a range of credit scores, can we predict interest rate for a new borrower?

2.1.2 � Subject Area
The process of data mining uncovers hidden patterns in the data set by expos-
ing relationships between attributes. But the issue is that it uncovers a lot of 
patterns. False signals are a major problem in the process. It is up to the data 
mining practitioner to filter through the patterns and accept the ones that are 
valid and relevant to answer the objective question. Hence, it is essential to 
know the subject matter, the context, and the business process generating the 
data.

The lending business is one of the oldest, most prevalent, and complex of 
all the businesses. If the data mining objective is to predict the interest rate, 
then it is important to know how the lending business works, why the predic-
tion matters, what we do once we know the predicted interest rate, what data 
points can be collected from borrowers, what data points cannot be collected  
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because of regulations, what other external factors can affect the interest rate, 
how we verify the validity of the outcome, and so forth. Understanding cur-
rent models and business practices lays the foundation and establishes known 
knowledge. Analysis and mining the data provides the new knowledge that can 
be built on top of existing knowledge (Lidwell et al., 2003).

2.1.3 � Data
Similar to prior knowledge in the subject area, there also exists prior knowledge 
in data. Data is usually collected as part of business processes in a typical enter-
prise. Understanding how the data is collected, stored, transformed, reported, 
and used is essential for the data mining process. This part of the step considers 
all the data available to answer the business question and if needed, what data 
needs to be sourced from the data sources. There are quite a range of factors to 
consider: quality of the data, quantity of data, availability of data, what hap-
pens when data is not available, does lack of data compel the practitioner to 
change the business question, etc. The objective of this step is to come up with 
a data set, the mining of which answers the business question(s). It is critical to 
recognize that a model is only as good as the data used to create it.

For the lending example, we have put together an artificial data set of ten data 
points with three attributes: identifier, credit score, and interest rate. First, let’s 
look at some of the terminology used in the data mining process in relation to 
describing the data.

	 n	� A data set (example set) is a collection of data with a defined structure. 
Table 2.1 shows a data set. It has a well-defined structure with 10 rows 
and 3 columns along with the column headers.

	 n	� A data point (record or data object or example) is a single instance in the 
data set. Each row in Table 2.1 is a data point. Each instance contains 
the same structure as the data set.

Table 2.1  Data Set

Borrower ID Credit Score Interest Rate

01 500 7.31%
02 600 6.70%
03 700 5.95%
04 700 6.40%
05 800 5.40%
06 800 5.70%
07 750 5.90%
08 550 7.00%
09 650 6.50%

10 825 5.70%
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	 n	� An attribute (feature or input or dimension or variable or predictor) is a 
single property of the data set. Each column in Table 2.1 is an attribute. 
Attributes can be numeric, categorical, date-time, text, or Boolean data 
types. In this example, credit score and interest rate are numeric attribute.

	 n	� A label (class label or output or prediction or target or response) is the 
special attribute that needs to be predicted based on all input attributes. 
In Table 2.1, interest rate is the output variable.

	 n	� Identifiers are special attributes that are used for locating or providing 
context to individual records. For example, common attributes like 
Names, account numbers, employee ID are identifier attributes. 
Identifiers are often used as lookup keys to combine multiple data sets. 
They bear no information that is suitable for building data mining 
models and should thus be excluded for the actual modeling step. In 
Table 2.1, the ID is the identifier.

2.1.4 � Causation vs. Correlation
Let’s invert our prediction objective: Based on the data in Table 2.1, can we predict 
the credit score of the borrower based on interest rate? The answer is yes—but it doesn’t 
make business sense. From existing domain expertise, we know credit score influ-
ences the loan interest rate. Predicting credit score based on interest rate inverses 
that causation relationship. This question also exposes one of the key aspects of 
model building. The correlation between the input and output attributes doesn’t 
guarantee causation. Hence, it is very important to frame the data mining question 
correctly using the existing domain and data knowledge. In this data mining exam-
ple, we are going to predict the interest rate of the new borrower with unknown 
interest rate (Table 2.2) based on the pattern learned from known data in Table 2.1.

2.2 � DATA PREPARATION
Preparing the data set to suit a data mining task is the most time-consuming part 
of the process. Very rarely data are available in the form required by the data min-
ing algorithms. Most of the data mining algorithms would require data to be struc-
tured in a tabular format with records in rows and attributes in columns. If the data 
is in any other format, then we would need to transform the data by applying pivot 
or transpose functions, for example, to condition the data into required structure. 
What if there are incorrect data? Or missing values? For example, in hospital health 
records, if the height field of a patient is shown as 1.7 centimeters, then the data is 

Table 2.2  New Data with Unknown Interest Rate

Borrower ID Credit Score Interest Rate

11 625 ?
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obviously wrong. For some records height may not be captured in the first place 
and left blank. Following are some of the activities performed in Data Preparation 
stage, along with common challenges and mitigation strategies.

2.2.1 � Data Exploration
Data preparation starts with an in-depth exploration of the data and gain-
ing more understanding of the data set. Data exploration, also known as 
Exploratory Data Analysis (EDA), provides a set of simple tools to achieve basic  
understanding of the data. Basic exploration approaches involve computing 
descriptive statistics and visualization of data. Basic exploration can expose the 
structure of the data, the distribution of the values, the presence of extreme values 
and highlights the interrelationships within the data set. Descriptive statistics like 
mean, median, mode, standard deviation, and range for each attribute provide an 
easily readable summary of the key characteristics of the distribution of the data. 
On the other hand, a visual plot of data points provides an instant grasp of all the 
data points condensed into one chart. Figure 2.3 shows the scatterplot of credit 
score vs. loan interest rate and we can observe that as credit score increases, interest 
rate decreases. We will review more data exploration techniques in Chapter 3. In 
general, a data set sourced to answer a business question has to be analyzed, pre-
pared, and transformed before applying algorithms and creating models.
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FIGURE 2.3
Scatterplot for interest rate data set.
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2.2.2 � Data Quality
Data quality is an ongoing concern wherever data is collected, processed, and 
stored. In the data set used as an example (Table 2.1), how do we know if the 
credit score and interest rate data are accurate? What if a credit score has a 
recorded value of 900 (beyond the theoretical limit) or if there was a data entry 
error? These errors in data will impact the representativeness of the model. 
Organizations use data cleansing and transformation techniques to improve 
and manage the quality of data and store them in companywide repositories 
called Data Warehouses. Data sourced from well-maintained data warehouses 
have higher quality, as there are proper controls in place to ensure a level of 
data accuracy for new and existing data. The data cleansing practices include 
elimination of duplicate records, quarantining outlier records that exceed the 
bounds, standardization of attribute values, substitution of missing values, etc. 
Regardless, it is critical to check the data using data exploration techniques in 
addition to using prior knowledge of the data and business before building 
models to ensure a certain degree of data quality.

2.2.3 � Missing Values
One of the most common data quality issues is that some records having miss-
ing attribute values. For example, a credit score may be missing in one of the 
records. There are several different mitigation methods to deal with this prob-
lem, but each method has pros and cons. The first step in managing missing 
values is to understand the reason behind why the values are missing. Tracking 
the data lineage of the data source can lead to identifying systemic issues in 
data capture, errors in data transformation, or there may be a phenomenon 
that is not understood to the user yet. Knowing the source of a missing value 
will often guide what mitigation methodology to use. We can substitute the 
missing value with a range of artificial data so that we can manage the issue 
with marginal impact on the later steps in data mining. Missing credit score 
values can be replaced with a credit score derived from the data set (mean or 
minimum or maximum value, depending on the characteristics of the attri-
bute). This method is useful if the missing values occur completely randomly 
and the frequency of occurrence is quite rare. If not, the distribution of the 
attribute that has missing data will be distorted. Alternatively, to build the rep-
resentative model, we can ignore all the data records with missing value or 
records with poor data quality. This method reduces the size of the data set. 
Some data mining algorithms are good at handling records with missing val-
ues, while others expect the data preparation step to handle it before model 
is built and applied. For example, k-nearest neighbor (k-NN) algorithm for 
classification tasks are often robust with missing values. Neural network mod-
els for classification tasks do not perform well with missing attributes and thus 
the data preparation step is essential for developing neural network models.
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2.2.4 � Data Types and Conversion
The attributes in a data set can be of different types, such as continuous 
numeric (interest rate), integer numeric (credit score), or categorical. In some 
data sets, credit score is expressed as ordinal or categorical (poor, good, excel-
lent). Different data mining algorithms impose different restrictions on what 
data types they accept as inputs. If the model we are about to build is a simple 
linear regression model, the input attributes need to be numeric. If the data 
that is available is categorical, then it needs to be converted to continuous 
numeric attribute. There are several methods available for conversion of 
categorical types to numeric attributes. For instance, we can encode a specific 
numeric score for each category value, such as poor = 400,good = 600, excel-
lent = 700, etc. Similarly, numeric values can be converted to categorical data 
types by a technique called binning, where a range of values are specified for 
each category, e.g, low = [400–500] and so on.

2.2.5 � Transformation
In some data mining algorithms like k-NN, the input attributes are expected 
to be numeric and normalized, because the algorithm compares the values 
of different attributes and calculates distance between the data points. It is 
important to make sure one particular attribute doesn’t dominate the distance 
results because of large values or because it is denominated in smaller units. 
For example, consider income (expressed in USD, in thousands) and credit 
score (in hundreds). The distance calculation will always be dominated by 
slight variation in income. One solution is to convert the range of income and 
credit score to a more uniform scale from 0 to 1 by standardization or nor-
malization. This way, we can make a consistent comparison between the two 
different attributes with different units. However, the presence of outliers may 
potentially skew the results of normalization.

In a few data mining tasks, it is necessary to reduce the number of attri-
butes. Statistical techniques like principal component analysis (PCA) reduce 
attributes into a few key or principal attributes. PCA is discussed in Chapter 12 
Feature Selection. The presence of multiple attributes that are highly cor-
related may be undesirable for few algorithms. For example, having both 
annual income and taxes paid are highly correlated and hence we may need 
to remove one of the attributes. This is explained in a little more detail in 
Chapter 5 Regression Methods, where we discuss regression.

2.2.6 � Outliers
Outliers by definition are anomalies in the data set. Outliers may occur legiti-
mately (income in billions) or erroneously (human height 1.73 centimeters). 
Regardless, the presence of outliers needs to be understood and will require special 
treatment. The purpose of creating a representative model is to generalize a pattern 
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or a relationship in the data and the presence of outliers skews the model. The 
techniques for detecting outliers will be discussed in detail in Chapter 11 Anomaly 
Detection on anomaly detection. Detecting outliers may be the primary purpose 
of some data mining applications, like fraud detection and intrusion detection.

2.2.7 � Feature Selection
The example data set shown in Table 2.1 has one attribute or feature—credit 
score—and one label—interest rate. In practice, many data mining problems 
involve a data set with hundreds to thousands of attributes. In text mining 
applications (see Chapter 9 Text Mining), every distinct word in a document is 
considered an attribute in the data set. Thus the data set used in this applica-
tion contains thousands of attributes. Not all the attributes are equally import-
ant or useful in predicting the desired target value. Some of the attributes may 
be highly correlated with each other, like annual income and taxes paid. The 
presence of a high number of attributes in the data set significantly increases 
the complexity of a model and may degrade the performance of the model due 
to the curse of dimensionality. In general, the presence of more detailed informa-
tion is desired in data mining because discovering nuggets of a pattern in the 
data is one of the attractions of using data mining techniques. But, as the num-
ber of dimensions in the data increases, data becomes sparse in high-dimen-
sional space. This condition degrades the reliability of the models, especially 
in the case of clustering and classification (Tan et al., 2005).

Reducing the number of attributes, without significant loss in the performance 
of the model, is called feature selection. Chapter 12 provides details on different 
techniques available for feature selection and its implementation considerations. 
Reducing the number of attributes in the data set leads to a more simplified 
model and helps to synthesize a more effective explanation of the model.

2.2.8 � Data Sampling
Sampling is a process of selecting a subset as a representation of the original 
data set for use in data analysis or modeling. Sample data serves as a represen-
tative of the original data set with similar properties, such as a similar mean. 
Sampling reduces the amount of data that needs to be processed for analy-
sis and modeling. In most cases, to gain insights, extract the information and 
build representative predictive models from the data it is sufficient to work 
with samples. Sampling speeds up the build process of the modeling. Theoret-
ically, the error introduced by sampling impacts the relevancy of the model but 
their benefits far outweighs the risks.

In the build process for Predictive Analytics applications, it is necessary to 
segment the data sets to training and test samples. Depending on the appli-
cation, the training data set is sampled from the original data set using sim-
ple sampling or class label specific sampling. Let us consider the use cases for 
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predicting anomalies in a data. Depending on the application, the training 
data set is sampled from the original data set using simple sampling or class 
label specific sampling. Let us consider the use cases for predicting anomalies 
in a data set (e.g., predicting fraudulent credit card transactions).

The objective of anomaly detection is to classify outliers in the data. These 
are rare events and often the example data does not have many examples of 
the outlier class. Stratified sampling is a process of sampling where each class is 
equally represented in the sample; this allows the model to focus on the dif-
ference between the patterns of each class. In classification applications, sam-
pling is used create multiple base models, each developed using a different set 
of sampled training data sets. These base models are using to build one meta 
model, called the ensemble model, where the error rate is improved when com-
pared to that of the base models.

2.3 � MODELING
A model is the abstract representation of the data and its relationships in a 
given data set. A simple statement like “mortgage interest rate reduces with 
increase in credit score” is a model; although there is not enough quantitative 
information to use in a production scenario, it provides directional informa-
tion to abstract a relationship between credit score and interest rate.

There are a few hundred data mining algorithms in use today, derived from 
statistics, machine learning, pattern recognition, and computer science 
body of knowledge. Fortunately, there are many viable commercial and 
open source predictive analytics and data mining tools in the market that 
implement these algorithms. As a data mining practitioner, all we need 
to be concerned with is having an overview of the algorithm. We want to 
know how it works and determine what parameters need to be configured 
based on our understanding of the business and data. Data mining mod-
els can be classified into the following categories: classification, regression, 
association analysis, clustering, and outlier or anomaly detection. Each cat-
egory has a few dozen different algorithms; each takes a slightly different 
approach to solve the problem at hand. Classification and regression tasks 
are predictive techniques because they predict an outcome variable based 
on one or more input variables. Predictive algorithms need a known prior 
data set to “learn” the model. Figure 2.4 shows the steps in the modeling 
phase of predictive data mining. Association analysis and clustering are 
descriptive data mining techniques where there is no target variable to pre-
dict; hence there is no test data set. However, both predictive and descrip-
tive models have an evaluation step. Anomaly detection can be predictive 
if known data is available or use unsupervised techniques if the known 
training data is not available.
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2.3.1 � Training and Testing Data Sets
To develop a stable model, we need to make use of a previously prepared data 
set where we know all the attributes, including the target class attribute. This is 
called the training data set and it is used to create a model. We also need to check 
the validity of the created model with another known data set called the test data 
set or validation data set. To facilitate this process, the overall known data set can 
be split into a training data set and a test data set. A standard rule of thumb is 
for two-thirds of the data to go to training and one-third to go to the test data 
set. There are more sophisticated approaches where training records are selected 
by random sampling with replacement, which we will discuss in Chapter 4 
Classification. Tables 2.3 and 2.4 show the random split of training and test data, 
based on the example data set shown in Table 2.1. Figure 2.5 shows the scatter-
plot of the entire example data set with the training and test data sets marked.

2.3.2 � Algorithm or Modeling Technique
The business question and data availability dictate what data mining category 
(association, classification, regression, etc.) needs to be used. The data mining 
practitioner determines the appropriate data mining algorithm within the cho-
sen category. For example, within classification any of the following algorithms 
can be chosen: decision trees, rule induction, neural networks, Bayesian models, 
k-NN, etc. Likewise within decision tree techniques, there are quite a number of  
implementations like CART, RAID, etc. We will review all these algorithms in 
detail in later chapters. It is not uncommon to use multiple data mining cate-
gories and algorithms to solve a business question.

Interest rate prediction is considered a regression problem. We are going to use 
a simple linear regression technique to model the data set and generalize the 
relationship between credit score and interest rate. The data set with 10 records 
can be split into training and test sets. The training set of seven records will be 
used to create the model and the test set of three records will be used to evalu-
ate the validity of the model.

FIGURE 2.4
Modeling steps.
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Table 2.3  Training Data Set

Borrower Credit Score (X) Interest Rate (Y)

01 500 7.31%
02 600 6.70%
03 700 5.95%
05 800 5.40%
06 800 5.70%
08 550 7.00%

09 650 6.50%

Table 2.4  Test Data Set

Borrower Credit Score (X) Interest Rate (Y)

04 700 6.40%
07 750 5.90%

10 825 5.70%
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FIGURE 2.5
Scatterplot of training and test data.
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The objective of simple linear regression can be visualized as fitting a straight 
line through the data points in a scatterplot (Figure 2.6). The line has to be 
built in such a way that the sum of the squared distance from the data points 
to the line is minimal. Generically, the line can be expressed as

	y = a * x + b	 (2.1)

where y is the output or dependent variable, x is the input or independent 
variable, b is the y-intercept, and a is the coefficient of x. We can find the values 
of a and b in such a way so as to minimize the sum of the squared residuals of 
the line (Weisstein, 2013). We will review the concepts and steps in developing 
a linear regression model in greater detail in Chapter 5 Regression Methods.

The line shown in Equation 2.1 serves as a model to predict the outcome of 
new unlabeled data set. For the interest rate data set, we have calculated the 
simple linear regression for the interest rate (y):

	
y = 0.1 +

6

100, 000
x
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FIGURE 2.6
Regression model.
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Interest rate = 10%−

6 * Credit Score

1, 000
%

	

Using this model we can calculate the interest rate for a specified credit score of 
the borrower. Linear regression is one of the simplest models to get us started 
in model building and more complex models are discussed later in this book. 
In reality, the rate calculation involves a few dozen input variables and also 
takes into account the nonlinear relationship between variables.

2.3.3 � Evaluation of the Model
The model generated in the form of an equation is generalized and synthesized 
from seven training records. We can substitute the credit score in the equation 
and see if the model estimates the interest rate for each of the seven training  
records. The estimation may not be exactly the same as the values in the training  
records. We do not want a model to memorize and output the same values 
that are in the training records. The phenomenon of a model memorizing the 
training data is called overfitting, which will be explored in Chapter 4 Clas-
sification. An overfitted model just memorizes the training records and will 
underperform on real production data. We want the model to generalize or 
learn the relationship between credit score and interest rate. To evaluate this 
relationship, the validation or test data set, which was not previously used in 
building the model, is used for evaluation, as shown in Table 2.5.

Table 2.5 provides the three testing records where the interest rate is known; these 
records were not used to build the model. The actual value of the interest rate can 
be compared against the predicted value using the model and thus the prediction 
error can be calculated. As long as the error is acceptable, this model can be used for 
deployment. The error rate can be used to compare this model with other models 
developed from different algorithms like neural networks or Bayesian models, etc.

2.3.4 � Ensemble Modeling
Ensemble modeling is a process where multiple diverse models are created to 
predict an outcome, either by using many different modeling algorithms or using 
different training data sets. The ensemble model then aggregates the prediction 

Table 2.5  Evaluation of Test Data Set

Borrower Credit Score (X) Interest Rate (Y)
Model
Predicted (Y) Model Error

04 700 6.40% 6.11% -0.29%
07 750 5.90% 5.81% -0.09%

10 825 5.70% 5.37% -0.33%
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of each base model and results in once final prediction for the unseen data. 
The motivation for using ensemble models is to reduce the generalization error 
of the prediction. As long as the base models are diverse and independent, the 
prediction error of the model decreases when the ensemble approach is used. 
The approach seeks the wisdom of crowds in making a prediction. Even though 
the ensemble model has multiple base models within the model, it acts and 
performs as a single model. Most of the practical data mining solutions utilize 
ensemble modeling techniques. Chapter 4 Classification covers the approaches 
of different ensemble modeling techniques and their implementation in detail.

At the end of the modeling stage of the data mining process, we have (1) ana-
lyzed the business question, (2) sourced the data relevant to answer the ques-
tion, (3) picked a data mining technique to answer the question, (4) picked a 
data mining algorithm and prepared the data to suit the algorithm, (5) split 
the data into training and test data sets, (6) built a generalized model from 
the training data set, and (7) validated the model against the test data set. This 
model now can be used to predict the target variable based on an input vari-
able of unseen data. This answers the business question on prediction. Now, 
the model needs to be deployed, for example by integrating the model in the 
production loan approval process of an enterprise.

2.4 � APPLICATION
Deployment or application is the stage at which the model becomes produc-
tion ready or “live.” In business applications, the results of the data mining, 
either the model for predictive tasks or the learning framework for association 
rules or clustering, need to be assimilated into the business process—usually 
in software applications. The model deployment stage leads to some key con-
siderations: assessing model readiness, technical integration, response time, 
model maintenance, and assimilation.

2.4.1 � Production Readiness
The production readiness part of the deployment determines the critical quali-
ties required for the deployment objective. Let’s consider two distinct use cases: 
determining whether a consumer qualifies for a loan account with a commercial 
leading institution and determining the groupings of customers for an enterprise.

The consumer credit approval process is a real-time endeavor. Either through 
a consumer-facing website or through a specialized application for frontline 
agents, the credit decisions and terms need to be provided in real time as soon 
as prospective customers provide relevant information. It is seen as a competi-
tive advantage to provide a quick decision while also providing accurate results 
in the interest of customer and the company. The decision-making model 
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needs to collect data from the customer, integrate third-party data like credit 
history, and make a decision on the loan approval and terms in a matter of 
seconds. The critical quality in this model deployment is real-time prediction.

Segmenting customers based on their relationship with the company is a thought-
ful process where signals from various interactions through a number of depart-
ments in a company are considered. Based on the patterns, similar customers are 
put in cohorts and treatment strategies are deviced to best engage the customer. 
For this application, batch processing, where data is collected overnight from 
various departments and sources, is integrated and the overall customer records 
are segmented. The critical quality in this application is the ability to find unique 
patterns amongst customers, not the response time of the model. The business 
application informs the choices that need to be made in data preparation and 
modeling steps, in terms of accessibility of the data and algorithms.

2.4.2 � Technical Integration
Most likely some kind of data mining software tool (R, RapidMiner, SAS, 
SPSS, etc.) would have been used to create the data mining models. Data 
mining tools save time by not requiring the writing of custom codes to imple-
ment the algorithm. This allows the analyst to focus on the data, business 
logic, and exploring patterns from the data. The models created by data min-
ing tools can be ported to production applications by utilizing the Predictive 
Model Markup Language (PMML) (Guazzelli et  al., 2009) or by invoking 
data mining tools in the production application. PMML provides a portable 
and consistent format of model description which can be read by most Pre-
dictive Analytics and Data Mining tools. This allows the flexibility for practi-
tioners to develop the model with one tool (e.g., RapidMiner) and deploy it 
in another tool (e.g., SAS). PMML standards are developed and maintained 
by the Data Mining Group, an industry-lead consortium. Models such as 
simple regression, decision trees, and induction rules for predictive analytics 
can be incorporated directly into business applications and business intelli-
gence systems easily. Since these models are represented by simple equations 
and if-then rules, they can be ported easily to most programming languages.

2.4.3 � Response Time
Some data mining algorithms, like k-NN, are easy to build but quite slow in 
predicting the target variables. Algorithms such as the decision tree take time 
to build but can be reduced to simple rules that can be coded into almost any 
application. The trade-offs between production responsiveness and build time 
need to be considered and if needed, the modeling phase needs to be revisited 
if the response time is not acceptable by business application. The quality of 
prediction, accessibility of input data and the response time of the prediction 
remains the most important quality factors in the business application.
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2.4.4 � Remodeling
The key criterion for the ongoing relevance of the model is the representa-
tiveness of the data set it is processing. It is quite normal that the conditions 
in which the model is built change after the model is sent to deployment. 
For example, the relationship between the credit score and interest rate 
change frequently based on the prevailing macroeconomic conditions. 
Hence the model needs to be updated frequently for this application. The 
validity of the model can be routinely tested by using the new known test 
data set and calculating the error rate. If the error rate exceeds a particular 
threshold, then we can rebuild the model and redo the deployment. Cre-
ating a maintence schedule is a key part of a deployment plan that will 
sustain a living model.

2.4.5 � Assimilation
In descriptive data mining applications, deploying a model to live systems may 
not be the objective. The challenge is often to assimilate the knowledge gained 
from data mining to the organization or a specific application. For example, the 
objective may be finding logical clusters in the customer database so that sepa-
rate treatment can be provided to each customer cluster. Then the next step may 
be a classification task for new customers to put them in one of known clusters. 
Association analysis provides a solution for the market basket problem, where 
the task is to find which two products are purchased together most often. The 
challenge for the data mining practitioner is to articulate these findings, rele-
vance to the original business question, a quantification of risks in the model 
and expected business impact to the business users. Often, this is a challenging 
task for data mining practitioner. The business user community is an amalgama-
tion of different point of views, different quantitative mind set and skill set. Not 
everyone is aware about process of Data Mining and what it can and cannot do. 
Some aspect of this challenge can be addressed by focusing on the end result and 
it’s impact of knowing the information instead of technical process of extract-
ing the information through data mining. Understanding and rationalizing the 
results for these tasks may lead to taking action through business processes.

2.5 � KNOWLEDGE
The data mining process provides a framework to extract nontrivial informa-
tion from data. With the advent of massive storage, increased data collection, 
and advanced computing paradigms, the data at our disposal are only increas-
ing. To extract knowledge from these massive data assets, we need to employ 
advanced approaches like data mining algorithms, in addition to standard 
time series reporting or simple statistical processing. Though many of these 
algorithms can provide valuable knowledge extraction, it’s up to the analytics 
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professional to skillfully apply the right algorithms and transform a business 
problem to a data problem. Data mining, like any other technology, provides 
options in terms of algorithms and parameters within the algorithms. Using 
these options to extract the right information is a bit of art and can be devel-
oped with practice.

The data mining process starts with prior knowledge and ends with posterior 
knowledge, which is the incremental insight gained about the business via data 
through the process. As with any quantitative analysis, the data mining process 
can point out spurious irrelevant patterns from the data set. Not all discovered 
patterns leads to knowledge. Again, it is upon the practitioner to invalidate 
the irrelevant patterns and identify meaningful information. The impact of 
the information gained through data mining can be measured in an applica-
tion. It’s the difference between having the information through the data min-
ing process and the insights from basic data analysis. Finally, the whole data 
mining process is a framework to invoke the right questions (Chapman et al., 
2000) and guide us through the right approaches to solve a business problem. 
It is not meant to be used as a set of rigid rules, but as a set of iterative, distinct 
steps that aid in knowledge discovery.

WHAT’S NEXT?
In upcoming chapters, we will dive into the details of the concepts discussed 
in this chapter, along with the implementation details. Exploring data by using 
basic statistical and visual techniques are an important step in preparing the 
data for data mining. The next chapter on Data Exploration provides a practical 
tool kit to explore and understand the data. The techniques of data preparation 
are explained in the context of individual data mining techniques in the chap-
ters on classification, association analysis, clustering, and anomaly detection. 
Chapter 13 Getting Started with RapidMiner covers the practical implementa-
tion of data preparation techniques using RapidMiner.
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CHAPTER 3

The word “data” is derived from Latin word dare, which means “something 
given”—an observation or a fact about a subject. Data mining helps deci-
pher the hidden relationships within the data. Before venturing into any 
advanced analysis of the data using statistical, machine learning, and algo-
rithmic techniques, it is essential to perform basic data exploration to study 
the main characteristics of the data. Data exploration helps us to under-
stand the data better, to prepare the data in a way that makes advanced 
analysis possible, and sometimes to get the necessary insights from the data 
faster than using advanced analytical techniques.

Data exploration, also known as exploratory data analysis (EDA), provides a 
set of simple tools to obtain some basic understanding of the data. The results 
of data exploration can be extremely powerful in grasping the structure of the 
data, the distribution of the values, and the presence of extreme values and 
interrelationships within the data set. Data exploration also provides guidance 
on applying the right kind of further statistical and data mining treatment to 
the data. Data exploration tools are a part of standard data analysis software 
packages from the ubiquitous Microsoft Excel® to advanced data mining soft-
ware like R, RapidMiner, SAS, IBM SPSS etc. Simple pivot table functions, com-
puting statistics like mean and deviation, and plotting data as a line, bar, and 
scatter charts are part of data exploration techniques that are used in everyday 
business setting.

Data exploration can be broadly classified into two types—descriptive sta-
tistics and data visualization. Descriptive statistics is the process of condens-
ing key characteristics of the data set into simple numeric metrics. Some of 
the common metrics used are mean, standard deviation, and correlation. 
Visualization is the process of projecting the data, or parts of it, into multi-
dimensional space or into abstract images. Data exploration in the context 
of data mining uses both descriptive statistics and visualization techniques. 
This chapter serves as a roadmap for exploring and analyzing a data set. The 
process of structured data exploration reveals much information about the 
data, which can be used to decide on the next steps for mining the data.

Data Exploration
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3.1 � OBJECTIVES OF DATA EXPLORATION
In the data mining process, data exploration is leveraged in many different 
steps including preprocessing or data preparation, modeling, and interpreta-
tion of the modeling results.

	 1.	� Data understanding: With preliminary analysis, data exploration 
provides a high level overview of each attribute in the data set and 
interaction between the attributes. Data exploration helps answers  
the questions like what is the typical value of an attribute, how much 
the data points differ from the typical value, or are there any outliers  
in the data set, for example.

	 2.	� Data preparation: Before applying the data mining algorithm, we 
need to prepare the data set for handling of any anomalies that may 
be present in the data. But first, those anomalies need to be identified, 
which includes finding outliers, missing values, and removal of 
duplicate or highly correlated attributes. Some data mining algorithms 
do not work very well when input attributes are correlated with each 
other. Thus, correlated attributes need to be identified and removed.

	 3.	� Data mining tasks: Basic data exploration can sometime substitute for 
the entire data mining process. For example, scatterplots can identify 
clusters in low-dimensional data or can help develop regression or 
classification models with simple visual rules.

	 4.	� Interpreting the results: Finally, data exploration is used in 
understanding the prediction, classification, and clustering results of the 
data mining process. In low dimensional clustering, a scatterplot is an 
efficient way to visualize clusters. Histograms allow for comprehension 
of the distribution of the attribute and can also be useful for visualizing 
numeric prediction, error rate estimation, etc.

3.2 � DATA SETS
Throughout the rest of the chapter and the book we will introduce a few 
classic data sets that are simple to understand, easy to explain, and can 
be used commonly across many different data mining techniques, which 
allows us to compare the performance of these techniques. The most pop-
ular of all data sets for data mining is probably the Iris data set, introduced 
by Ronald Fisher, in his seminal work on discriminant analysis, “The use 
of multiple measurements in taxonomic problems” (Fisher, 1936). Iris is 
a flowering plant that is widely found across the world. The genus of Iris 
contains more than 300 different species. Each species exhibits different 
physical characteristics like shape and size of the flowers and leaves. The 
Iris data set contains 150 observations of three different species, Iris setosa, 
Iris virginica, and Iris versicolor, with 50 observations each. Each observation 
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consists of four attributes: sepal length, sepal width, petal length, and petal 
width. The fifth attribute is the name of the species observed, which takes 
the values Iris setosa, Iris virginica, and Iris versicolor. Petals are the brightly 
colored inner part of the flowers and sepals form the outer part of the flower 
and are usually green in color. In an Iris however, both sepals and petals are 
purple in color, but can be distinguished from each other by differences in 
shape (Figure 3.1).

All four attributes in the Iris data set are numeric continuous values measured in 
centimeters. One of the species, Iris setosa, can be easily distinguished from the 
other two using linear regression or simple rules, but separating the virginica and 
versicolor classes requires more complex rules that involve more attributes. The 
data set is available in all standard data mining tools, such as RapidMiner, or can 
be downloaded from public websites such as the University of California Irvine –  
Machine Learning repository2 (Bache & Lichman, 2013). This data set and 
other data sets used in this book can be downloaded from the companion 
website www.LearnPredictiveAnalytics.com.

The Iris data set is used for learning data mining mainly because it is sim-
ple to understand and explore and can be used to illustrate how different 
data mining algorithms perform on the same standard data set. The data set 
extends beyond two dimensions, with three class labels of which one class 
is easily separable (Iris setosa) by visual exploration, while classifying the 

2http://archive.ics.uci.edu/ml

Sepal Width

Sepal Length

Petal Length

Petal Width

FIGURE 3.1
Iris versicolor. Photo by Danielle Langlois. July 2005 (Image modified from original by marking parts. “Iris 
versicolor 3.” Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons.1)

1http://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg#mediaviewer/File:Iris_versicolor_3.jpg

http://www.learnpredictiveanalytics.com/
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other two classes is slightly challenging. It helps to reaffirm the classifica-
tion results that can be derived based on visual rules, and at the same time 
sets the stage for data mining to build new rules beyond the limits of visual 
exploration.

3.2.1 � Types of Data
Data comes in different formats and types. Understanding the properties of 
each variable or features or attributes provides information about what kind of 
operations can be performed on that variable. For example, the temperature in 
weather data can be expressed as any of the following formats:

	 n	� Numeric centigrade (31ºC, 33.3ºC) or Fahrenheit (100ºF, 101.45ºF) or on 
the Kelvin scale

	 n	� Ordered label as in Hot, Mild, or Cold
	 n	� Number of days within a year below 0ºC (10 days in a year below freezing)

All of these attributes indicate temperature in a region, but each has different 
data type. A few of these data types can be converted from one to another.

Numeric or Continuous
Temperature expressed in centigrade or Fahrenheit is numeric and continuous 
because it can be denoted by numbers and take an infinite number of values 
between digits. Values are ordered and calculating the difference between val-
ues makes sense. Hence we can apply additive and subtractive mathematical 
operations and logical comparison operations like greater than, less than, and 
is equal operations.

An integer is a special form of the numeric data type that doesn’t have decimals 
in the value or more precisely doesn’t have infinite values between consecutive 
numbers. Usually, they denote a count of something like number of days with 
temperature less than 0ºC, number of orders, number of children in a family, etc.

If a zero point is defined, numeric becomes a ratio or real data type. Examples 
include temperature in Kelvin scale, bank account balance, and income. Along 
with additive and logical operations, ratio operations can be performed with 
this data type. Both integer and ratio data types are categorized as a numeric 
data type in most Data Mining tools.

Categorical or Nominal
Categorical data types are variables treated as distinct symbols or just names. 
The color of the human iris is a categorical data type because it takes a value 
like black, green, blue, grey, etc. There is no direct relationship among the data 
values and hence we cannot apply mathematical operators except the logical or 
“is equal” operator. They are also called a nominal or polynominal data type, 
derived from the Latin word for “name.”
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An ordered data type is a special case of a categorical data type where there 
is some kind of order among the values. An example of an ordered data type 
is credit score when expressed in categories such as poor, average, good, and 
excellent. People with a good score have a credit rating better than average and 
an excellent rating is a credit score better than the good rating.

Data types are relevant to understanding more about the data and how the data is 
sourced. Not all data mining tasks can be performed on all data types. For exam-
ple, the neural network algorithm does not work with categorical data. However, 
we can convert data from one data type to another using a type conversion pro-
cess, but this may be accompanied with possible loss of information. For example, 
credit scores expressed in poor, average, good, and excellent categories can be con-
verted to either 1, 2, 3, and 4 or average underlying numerical scores like 400, 500, 
600, and 700 (scores here are just an example). In this type conversion, there is no 
loss of information. However, conversion from numeric credit score to categories 
(poor, average, good, and excellent) does incur some loss of information.

3.3 � DESCRIPTIVE STATISTICS
Descriptive statistics refers to the study of aggregate quantities such as mean, 
standard deviation or distributions quantification of the main characteristics 
of a data set. The descriptive measures increases the understanding of the data 
set; these measures are some of the commonly used notations in everyday life 
when we deal with data. Some examples of descriptive statistics include aver-
age annual income, median home price in a neighborhood, range of credit 
scores of a population, etc. In general, descriptive analysis covers the following 
characteristics of the sample or population data set (Kubiak & Benbow, 2006):

Characteristics of the Data Set Measurement Technique

Center of the data set Mean, median, and mode

Spread of the data set Range, variance, and standard deviation

Shape of the distribution of the data set Symmetry, skewness, and kurtosis

We will explore the definition of these metrics shortly. In a different context, 
descriptive statistics can be broadly classified into univariate and multivariate 
exploration depending on number of variables under analysis.

3.3.1 � Univariate Exploration
Univariate data exploration denotes analysis of one variable or an attribute at 
a time. The example Iris data set for one species, Iris setosa, has 50 observations 
and 4 attributes, as shown in Table 3.1. Let’s explore some of the descriptive 
statistics for Sepal length variable.
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Measure of Central Tendency
The objective of finding the central location of a variable is to quantify the data 
set with one central or most common number.

	 n	� Mean: The mean is the arithmetic average of all observations in the 
data set. It is calculated by summing all the data points and dividing by 
the number of data points. The mean for sepal length in centimeters is 
5.0060.

	 n	� Median: The median is the value of the central point in the distribution. 
The median is calculated by sorting all the observations from small to 
large and selecting the mid-point observation in the sorted list. If the 
number of data points is even, then the average of the middle two data 
points is used as the median. The median for sepal length is 5.0000.

	 n	� Mode: The mode is the most frequently occurring observation. In the 
data set, data points may be repetitive and the most repetitive data 
point is the mode of the data set. In this example, the mode is 5.1000.

In a variable, the mean, media, and mode may be different numbers and this 
indicates the shape of the distribution. If the data set has outliers, the mean 
will get affected while in most cases the median will not. The mode of the dis-
tribution can be different from the mean or median, if the underlying data set 
has more than one natural normal distribution.

Measure of Spread
In desert regions, it is common for the temperature to cross above 110ºF during 
the day and drop below 30ºF during the night while the average temperature for a 

Table 3.1  Iris Data Set and Descriptive Statistics (Fisher, 1936)

Observation Sepal Length Sepal Width Petal Length Petal Width

1 5.1 3.5 1.4 0.2
2 4.9 3.1 1.5 0.1
… … … … …
49 5 3.4 1.5 0.2

50 4.4 2.9 1.4 0.2

Statistics Sepal Length Sepal Width Petal Length Petal Width

Mean 5.006 3.418 1.464 0.244
Median 5.000 3.400 1.500 0.200
Mode 5.100 3.400 1.500 0.200
Range 1.500 2.100 0.900 0.500
Standard Deviation 0.352 0.381 0.174 0.107
Variance 0.124 0.145 0.030 0.011
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24-hour period is around 70ºF. Obviously, the experience is not same as living in 
a tropical region with an average daily temperature around 70ºF, where the tem-
perature is between a more narrow range from 60ºF to 80ºF. What matters here is 
not just central location of the temperature, but the spread of temperature. There 
are two common metrics to quantify spread.

	 n	� Range: The range is the difference between the maximum value and 
the minimum value of the variable. The range is simple to calculate 
and articulate but has shortcomings as it is severely impacted by the 
presence of outliers and fails to consider the distribution of all other 
data points in the attributes, especially the central point. In the above 
example, the range for the temperature in the desert is 80ºF and the 
range for the tropics is 20ºF. A desert experiences larger temperature 
swings as indicated by the range.

	 n	� Deviation: The variance and standard deviation measure the spread by 
considering the values of all the data points of the attribute. Deviation 
is simply measured as the difference between any given value and the 
mean of the sample (xi – μ), where μ is the mean of the distribution and 
xi is the individual data point. The variance is the sum of the squared 
deviations of all data points from the average data point divided by 
the number of data points. Standard deviation is the square root of the 
variance. For a data set with N observations, the variance is given by 
Equation 3.1:

	Variance = s2 =
1

N

∑N

i = 1
(xi − μ)2	 (3.1)

Since the standard deviation is measured in the same units as the variable, it 
is easy to understand the magnitude of the metric. High standard deviation 
means the data points are in general spread widely around the central point. 
Low standard deviation means data points are closer to the central point. If the 
distribution of the data aligns with the normal distribution, then 63% of the data 
points lie within one standard deviation from the mean. Figure 3.2 provides 
the univariate summary of the Iris data set with all 150 observations, for each 
of the four numeric attributes.

Sepal Length Real 0 4.300
Min Max Average Deviation

Deviation

Deviation

Deviation

Average

Average

Average

Max

Max

Max

Min

Min

Min

7.900 5.843

3.054

3.759

1.199 0.763

1.764

0.434

0.828

4.400

6.900

2.500

2

1

0.100

0

0

0

Real

Real

Real

Sepal Width

Petal Length

Petal Width

FIGURE 3.2
Descriptive statistics for the Iris data set.
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3.3.2 � Multivariate Exploration
Multivariate exploration is the study of more than one attribute in the data set 
at the same time. This technique is critical to understanding the relationship 
between the attributes, which is very central to the objectives of Data Mining 
problems. Like univariate explorations, we will discuss the measure of central 
tendency and variations in the data.

Central Data Point
In the Iris data set, we can express each data point as a set of all the four 
attributes:

observation i: {sepal length, sepal width, petal length, petal width}

For example, we have observation 1: {5.1, 3.5, 1.4, 0.2}. This observation point 
can also be expressed in four-dimensional Cartesian coordinates and can be 
plotted in a graph (although plotting more than three dimensions in a visual 
graph can be challenging). In this way, we can express all 150 observations in 
Cartesian coordinates. If our objective is to find the most “typical” observation 
point, it would be a data point made up of the mean of each attribute in the 
data set independently. For the Iris data set shown in Table 3.1, the central 
mean point is {5.006, 3.418, 1.464, 0.244}. Since we are calculating the mean, 
this data point may not be an actual observation. It will be a hypothetical data 
point with the most typical attribute values.

Correlation
Correlation measures the statistical relationship between two variables, par-
ticularly dependence of one variable with another variable. When two vari-
ables are highly correlated with each other, they both vary at the same rate 
with each other either in the same or in opposite directions. For example, 
consider average temperature in a day and ice cream sales. Statistically, the 
two variables that are correlated are dependent on each other and one may 
be used to predict the other. If we have sufficient data, we can predict future 
sales of ice cream if we know the temperature forecast. However, correlation 
between two variables does not imply causation, that is, one doesn’t neces-
sarily cause other. Ice cream sales and shark attacks are correlated, however 
there is no causation. Both ice cream sales and shark attacks are influenced 
by the third variable—the summer season. Generally, ice cream sales sees an 
increase as temperature rises and more people go to beaches, which cause an 
increase in encounters with sharks.

Correlation between two attributes is commonly measured by the Pearson 
correlation coefficient (r), which measures the strength of linear dependence 
(Figure 3.3). Correlation coefficients take a value from –1 <= r >= 1. A value 
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closer to 1 or –1 indicates the two variables are highly correlated, with perfect 
correlation at 1 or –1. Perfect correlation exists when the variables are governed 
by laws of physics, for example, when we observe the values of gravitational 
force and mass of the object (Newton’s second law) and the price of the prod-
uct and total sales (price * volume). A correlation value of 0 means there is no 
linear relationship between two variables.

The Pearson correlation coefficient between two variables x and y is calculated 
by the following formula:

	

rxy =
∑n

i = 1 (xi − x) (yi − y)√∑n
i = 1 (xi − x)2 ∑n

i = 1 (yi − y)2

=
∑N

i = 1 (xi − x) (yi − y)
N * Sx * Sy 	 (3.2)

where sx and sy are the standard deviations of random variables x and y, 
respectively. The correlation coefficient has some limitations in quantifying 
the strength of correlation. When data sets have more complex nonlinear 
relationships like quadratic functions, only the effects on linear relationships 
are considered and quantified using correlation coefficient. The presence 
of outliers can also skew the measure of correlation. Visually, correlation 
can be observed using scatterplots of variables in each Cartesian coordinate 
(Figure 3.3). In fact, visualization should be the first step in understand-
ing correlation because it can identify nonlinear relationships and show 
any outliers clearly in the data set. Anscombe’s quartet (Anscombe, 1973) 
clearly illustrates the limitations of relying only on the correlation coefficient  
(Figure 3.4). The quartet consists of four different data sets, with two vari-
ables (x, y). All four data sets have same mean, variance for x and y, and 

FIGURE 3.3
Correlation of variables.
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correlation coefficient between x and y, but look drastically different when 
plotted in the chart. This evidence illustrates the necessity of visualizing the 
variables instead of just calculating statistical properties.

3.4 � DATA VISUALIZATION
Visualizing data is one of the most important aspects of data discovery and 
exploration. Though visualization is not considered a data mining technique, 
terms like visual mining or pattern discovery based on visuals are increasingly 
used in the context of data mining, particularly in the business world. The 
discipline of data visualization encompasses the methods of expressing data 
in an abstract visual form. The visual representation of data provides easy 
comprehension of complex data with multiple variables and their underlying 
relationships. The motivation for data visualization includes:

	 n	� Comprehension of dense information: A simple visual chart can easily 
include thousands of data points. By using visuals, the user can see the 
big picture, as well as longer-term trends that are extremely difficult to 
interpret purely by expressing data in numbers.

FIGURE 3.4
Anscombe’s Quartet: descriptive statistics vs. visualization (Anscombe, F. J., 1973. Graphs in Statistical 
Analysis, American Statistician 27 (1), pp. 19–20.)
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	 n	� Relationships: Visualizing data in Cartesian coordinates enables 
exploration of the relationships between the variables. Although 
representing more than three variables on the x-, y-, and z-axes is not 
feasible in Cartesian coordinates, there are a few creative solutions 
available by changing properties like the size, color, and shape of 
data markers or using flow maps (Tufte, 2001), where more than two 
attributes are used in a two-dimensional medium.

Vision is the most powerful sense in the human body. As such, it is intimately 
connected with cognitive thinking (Few, 2006). Human vision is trained to dis-
cover patterns and anomalies even in the presence of a large set of data. How-
ever the effectiveness of the pattern detection depends on how effectively the 
information is visually presented. Hence, selecting suitable visuals to explore 
data is critically important in discovering and comprehending hidden patterns 
in the data (Ware, 2004). In this chapter, we are categorizing visualization tech-
niques into: Univariate visualization, multi-variate visualization and visualiza-
tion of large number of variables using parallel dimensions.

3.4.1 � Visualizing the Frequency Distribution of Data  
in a Dimension

The visual exploration starts with investigating one attribute at a time using 
univariate charts. The techniques discussed in this section gives an idea of how 
the attribute values are distributed and shape of the distribution.

Histogram
A histogram is one of the most basic visual ways to understand the frequency 
of occurrence of a range of values for one variable. It approximately determines 
the distribution of the data by plotting the frequency of occurrence in a range. 
In a histogram, the continuous variable under inquiry takes the horizontal 
axis and the frequency of occurrence takes the vertical axis. For a continuous, 
numeric data type we need to specify the range or binning value to group a 
range of values; for example, in the case of human height in centimeters, all the 
occurrences between 152.00 and 152.99 are grouped under 152. There is no 
optimal number of bins or bin width that works for all distributions. In gen-
eral, if the bin width is too small, the distribution becomes more precise but 
reveals the noise due to sampling. A general rule of thumb is to have a number 
of bins equal to the square root or cube root of the number of data points.

We will review some of the common data visualization 
techniques used to analyze data. Most of these 
visualization techniques are available in a commercial 
spreadsheet software like MS Excel (R). RapidMiner, 
like any other data mining tool, offers a wide range 

of visualization tools. To maintain consistency with 
rest of the book, all the following visualization is 
output from RapidMiner using the Iris data set. If 
you are new to RapidMiner, we suggest you review 
Chapter 13 Getting started with RapidMiner.
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Histograms are used to find the central location, range, and shape of distribu-
tion. In the case of the petal length variable in the Iris data set, we see the data 
is multimodal (Figure 3.5), where the distribution does not follow the bell 
curve pattern. Instead, there are two peaks in the distribution. This is due to 
the fact that we have 150 observations of three different species in the data set. 
If we sum all the frequencies by ranges, it should sum to 150.

A histogram can be modified to include different classes, in this case species, 
in order to gain more insight. The enhanced histogram with class labels shows 
the data set is made of three different distributions (Figure 3.6). Iris setosa’s 
distribution stands out with a mean around 1.25 and a range from 1 to 2 cm. 
Iris versicolor and Iris virginica’s distributions overlap Iris setosa’s slightly and 
have separate means.

Quartile
A box whisker plot is a simple visual way of showing the distribution of a con-
tinuous variable with information such as quartiles, median, and outliers, in 
some cases overlaid by mean and standard deviation. The main attraction of 
box whisker or quartile charts is that we can compare multiple distributions 

FIGURE 3.5
Histogram of petal length in Iris data set.
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side by side and deduce the overlap between them. Quartiles are denoted by 
Q1, Q2, and Q3 points, which indicate the data points with 25% bin size. In a 
distribution, 25% of the data points will be below Q1, 50% will be below Q2, 
and 75% will be below Q3.

The Q1 and Q3 points in a box whisker plot are denoted by the edges of the box. 
The Q2 point is indicated by a cross line within the box. Q2 is also the median 
of the distribution. Outliers are denoted by circles at the end of the whisker line. 
In some cases, the mean point is denoted by a solid dot overlay followed by 
standard deviation as a line overlay.

In Figure 3.7 quartile charts for all four variables of Iris data set are plotted side 
by side. We can observe petal length has the broadest distribution from the 150 
observations and petal width is generally the smallest measurement out of all 
four variables.

We can also select one variable—petal length—and explore it further using quar-
tile charts by introducing a class variable. In the plot in Figure 3.8, we can see 
the distribution of three species for the petal length measurement. Similar to 
the previous comparison, the distribution of multiple species can be compared.
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Distribution Chart
For continuous numeric variables like petal length, instead of visualizing the 
actual data in the sample, we can instead visualize its normal distribution func-
tion. The normal distribution function of a continuous random variable is 
given by the formula

FIGURE 3.7
Quartile plot of Iris data set.

FIGURE 3.8
Class-stratified quartile plot of petal length in Iris data set.
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f (x) =

1
√

2πσ
e
(x − μ)2

2σ2

	
(3.3)

where μ is the mean of the distribution and σ  is the standard deviation of the 
distribution. Here we are making an inherent assumption that the measure-
ments of petal length (or any continuous variable) follow the normal distri-
bution and hence we can visualize its distribution instead of actual values. The 
normal distribution is also called the Gaussian distribution or “bell curve” for 
the attribute due to its bell shape. The normal distribution function tells the 
probability of occurrence of a data point within a range. If a data set exhibits 
normal distribution, then 68.2% of data points fall within one standard devia-
tion from the mean. 95.4% of the points fall within 2σ  and 99.7% within 3σ  of 
the mean. When the normal distribution curves are stratified by class type, we 
can gain more insight into the data. Figure 3.9 shows the normal distribution 
curves for petal length measurement for each Iris species type. From the distri-
bution chart, we can infer the petal length for Iris setosa sample is more distinct 
and cohesive than Iris versicolor and Iris virginica. If we get an unlabeled mea-
surement with a petal length of 1.5 centimeter, we can predict that the species 
is Iris setosa; if the measurement is 5.0 centimeters, then there is no clear predic-
tion based on petal length, as it could be either Iris Versicolor and Iris virginica.

FIGURE 3.9
Distribution of petal length in Iris data set.
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3.4.2 � Visualizing Multiple Variables in Cartesian Coordinates
The multivariate visual exploration considers more than one attribute in the 
same visual. The techniques discussed in this section focuses on the relation-
ship of one attribute with another attribute. These visualizations examines two 
to four attributes simultaneously and becomes cumbersome when more than 
three attributes are studied.

Scatterplot
A scatterplot is one of the most powerful yet simple mathematical plots available. 
In a scatterplot, the data points are marked in Cartesian space with variables of 
the data set aligned in coordinates. The variables or dimensions are usually from 
a continuous data type. The data point itself can be colored to indicate one more 
variable from the data set. One of the key observations that can be concluded 
from a scatterplot is the existence of a relationship between two variables under 
inquiry. If the variables are correlated, then the data points align closer to an 
imaginary straight line; if they are not correlated, the data points are scattered. 
Apart from basic correlation, scatterplots can also indicate the existence of pat-
terns or groups of clusters in the data and identify outliers in the data. This is 
particularly useful for low-dimensional data sets. Chapter 11 Anomaly Detection 
provides techniques for finding outliers in high-dimensional space, by calculat-
ing the distance between data points.

Figure 3.10 shows the scatterplot between petal length (x-axis) and petal width 
(y-axis). Generally, these two attributes are slightly correlated, because this is a mea-
surement of the same part of the flower. When we color the data markers to indicate 
different species using class labels, we can observe more patterns. There is a cluster 
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of data points, all belonging to species Iris setosa, on the lower left side of the plot. 
Iris setosa has much smaller petal length and width. This feature can be used as a 
rule to predict the species of unknown observations. One of the limitations of scat-
terplots is that only two variables can be used at a time, with additional variables 
possibly shown in the color of the data marker (usually reserved for class labels).

Scatter Multiple
A scatter multiple is an enhanced form of a simple scatterplot where more 
than two dimensions can be included in the chart and studied simulta-
neously. The primary variable is used for the x-axis coordinate. The sec-
ondary axis is shared with more variables or dimensions. In this example  
(Figure 3.11), the values on the y-axis are shared between sepal length, sepal 
width, and petal width. The variable information is conveyed by colors used 
in data markers. Here, sepal length is represented by data points occupying the 
topmost part of the chart, sepal width occupies the middle portion, and petal 
width is in the bottom portion. Note that the data points are duplicated for each 
variable in the y-axis. Data points are color-coded for each dimension in y-axis 
and the x-axis is anchored with one variable—petal length. Even though a scat-
ter multiple plot allows for investigation of multiple dimensions, only two 
variables can be compared at a time, one of which one is on the primary axis.

Scatter Matrix
A scatter multiple enables comparison of more than two variables via scatter-
plot. But, the comparison is always with a primary variable and the relationship 

FIGURE 3.11
Scatter multiple plot of Iris data set.
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between two variables used on the y-axis is not very visible. If the data set has 
more variables, it is important to look at combinations of all variables through 
a scatterplot. A scatter matrix solves this need by comparing all combinations 
of variables with individual scatterplots and arranging these plots in a matrix.

A scatter matrix for all four attributes in the Iris data set is shown in  
Figure 3.12. The color of the data point is used to indicate the species of the 
flower. Since there are four attributes, there are four rows and four columns, 
for a total of 16 scatter charts. Charts in the diagonal are a comparison of the 
variable with itself; hence they are eliminated. Also, the charts below the diag-
onal are mirror images of the charts above the diagonal. In effect, there are six 

FIGURE 3.12
Scatter matrix plot of Iris data set.
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distinct comparisons in scatter multiples of four variables. Scatter matrices pro-
vide an effective visualization of comparative, multivariate, and high-density 
data displayed in small multiples of the same scatterplots (Tufte, 2001).

Bubble Chart
A bubble chart is a variation of a simple scatterplot with the addition of one 
more variable, which is used to determine the size of the data point. In the Iris 
data set, petal length and petal width is used for x- and y-axes and sepal width 
is used for the size of the data point. The color of the data point is species class 
label (Figure 3.13).

Density Chart
Density charts are similar to scatterplots, with one more dimension included as 
background color. The data point can also be colored to visualize one dimen-
sion and hence a total of four dimensions can be visualized in a density chart. 
In the example in Figure 3.14, petal length is used for the x-axis, sepal length 
for the y-axis, sepal width for the background color, and class label for the data 
point color.

3.4.3 � Visualizing High-Dimensional Data by Projection
Visualizing more than three attributes on a two dimensional medium (like 
paper, screen) is challenging. We can overcome this limitation by using trans-
formation techniques to project the data points in parallel axis space. In this 
approach, a Cartesian axis is shared by more than one attribute.

FIGURE 3.13
Bubble chart of Iris data set.
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Parallel Chart
A parallel chart visualizes a data point quite innovatively by transforming or 
projecting multidimensional data into two-dimensional chart medium. In 
this chart, every attribute or dimension is linearly arranged in one coordinate 
(x-axis) and all the measures are arranged in the other coordinate (y-axis). 
Since the x-axis is multivariant, each data point is represented as a line in a 
parallel universe.

In the case of the Iris data set, all four attributes are arranged along the 
x-axis and each observation is represented as a data point. The y-axis rep-
resents generic distance and it is “shared” by all these attributes on the 
x-axis. Hence, parallel charts work only when attributes share a common 
unit of numerical measure. If there are different units, we can still use paral-
lel charts by normalizing the attribute. This visualization is called a parallel 
axis because all four attributes are represented in four parallel axes, parallel 
to the y-axis.

In this chart, a class label is used to color each data line so that we introduce 
one more dimension into the picture. By observing this parallel chart in  
Figure 3.15, we notice that there is overlap between the three species on the 
sepal width attribute. So, sepal width cannot be the metric used to differentiate 
these three species. However, there is clear separation of species in petal length. 
No observation of Iris setosa species has a petal length below 2.5 cm and there 
is very little overlap between the Iris virginica and Iris versicolor species. Visually, 

FIGURE 3.14
Density chart of a few variables in the Iris data set.
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just by knowing the petal length of an unknown observation, we can predict 
the species of the Iris flower. We will check this hypothesis in later chapter on 
Classification.

Deviation Chart
A deviation chart is very similar to a parallel chart as it has parallel axes for all 
the attributes on the x-axis. Data points are extended across the dimensions as 
lines and there is one common y-axis. Instead of plotting all data points, devi-
ation charts only show the mean and standard deviation statistics. For each 
class, deviation charts show the mean line connecting the mean of each attri-
bute; the standard deviation is shown as the band above and below the mean 
line. The mean line doesn’t correspond to a data point (line). In a way, infor-
mation is elegantly displayed and the essence of a parallel chart is maintained.

In Figure 3.16, a deviation chart for the Iris data set is shown with species class 
label used for color and stratification. We can observe that the petal length is 
the key differentiator of the species class label because the mean line and the 
standard deviation bands for the species are well separated.

Andrews Curves
An Andrews plot belongs to a family of visualization techniques where the 
high-dimensional data is projected into a vector space so that each data point 
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takes the form of a line or curve. In an Andrews plot, each data point X with d 
dimensions, X = (x1, x2, x3, …, xd), takes the form of a Fourier series:

	fx (t) =
x1√

2
+ x2 sin (t) + x3 cos (t) + x4 sin (2t) + x5 cos (2t) + ⋯	 (3.4)

This function is plotted for –π < t < π for each data point. Andrews plots are 
useful to determine if there are any outliers in the data and to identify potential 
patterns within the data points (Figure 3.17). If two data points are similar, 
then the curves for the data points are closer to each other. If curves are far 
apart and belong to different classes, then we can use the information to clas-
sify the data (Garcia-Osorio & Fyfe, 2005).

Many of the charts and visuals discussed in this chapter explore the mul-
tivariate relationships within the data set. They form the set of classic data 
visualizations used for data exploration, post-processing, and understanding 
data mining models. Some new developments in the area visualization deals 
with networks and connections within the data objects (Lima, 2011). To bet-
ter analyze data extracted from graph data, social networks, and integrated 
applications, connectivity charts are often used. Interactive exploration of 
data using visualization software provides an essential tool to observe mul-
tiple attributes at the same time, but has limitations on the number of attri-
butes used in visualizations. Hence, dimensional reduction using techniques 
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discussed in Chapter 12 Feature Selection can help in visualizing higher- 
dimensional data.

3.5 � ROADMAP FOR DATA EXPLORATION
If we have a new data set that has not been investigated before, having a struc-
tured way to explore and analyze the data will be helpful. We present here a 
summary roadmap to inquire about a new data set. Not all steps may be rele-
vant for every data set and the order may need to be adjusted for some sets, so 
readers are encouraged to view this roadmap as guideline.

	 1.	� Organize the data set: Structure the data set with standard rows and 
columns. Organizing the data set to have objects or instances in rows 
and dimensions or attributes in columns will be helpful for many 
data analysis tools. Identify the target or “class label” attribute, if 
applicable.

	 2.	� Find the central point for each attribute: Calculate mean, median, and 
mode for each attribute and the class label, if applicable. If all three 
values are very different, it may indicate the presence of an outlier, or a 
multimodal or non-normal distribution for an attribute.

label Iris-setosa Iris-versicolor Iris-virginica

FIGURE 3.17
Andrews curves of Iris data set.
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	 3.	� Understand the spread of the attributes: Calculate the standard 
deviation and range for an attribute. Compare the standard deviation 
with the mean to understand the spread of the data, along with the max 
and min data points.

	 4.	� Visualize the distribution of each attribute: Develop the histogram and 
distribution plots for the attributes. Repeat the same for class-stratified 
histograms and distribution plots, where the plots are either repeated or 
color-coded for each class.

	 5.	� Pivot the data: Sometimes called dimensional slicing, a pivot is helpful 
to comprehend different values of the attributes. This technique can 
stratify by class and drill down to the details of any of the attributes. 
Microsoft Excel® popularized this technique of data analysis for general 
business users.

	 6.	� Watch out for outliers: Use scatter plot or Quartiles to find outliers. 
The presence of outliers skews some measures like mean, variance, 
and range. Based on the application, outliers can be excluded when 
rerunning data analysis. Notice if the results change. Identifying the 
outlier may be the objective in some applications.

	 7.	� Understanding the relationship between attributes: Measure the 
correlation between attributes and develop a correlation matrix. Notice 
what attributes are dependent with each other and investigate why they 
are dependent.

	 8.	� Visualize the relationship between attributes: Plot a quick scatter 
matrix to discover the relationship between multiple attributes at 
once. Zoom in on the attribute pairs with simple two-dimensional 
scatterplots stratified by class.

	 9.	� Visualization high-dimensional data sets: Create parallel charts 
and Andrews curves to observe the class differences exhibited by each 
attribute. Deviation charts provide a quick assessment of the spread of 
each class for each attribute.
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CHAPTER 4

We are entering the realm of predictive analytics—the process in which histor-
ical records are used to make a prediction about an uncertain future. At a very 
fundamental level, most predictive analytics problems can be categorized into 
either classification or numeric prediction problems. In classification or class 
prediction, we try to use the information from the predictors or independent 
variables to sort the data samples into two or more distinct classes or buckets. 
In the case of numeric prediction, we try to predict the numeric value of a 
dependent variable using the values assumed by the independent variables, as 
is done in a traditional regression modeling.

Let us describe the classification process with a simple, fun example. Most 
golfers enjoy playing if the weather and outlook conditions meet certain 
requirements: too hot or too humid conditions, even if the outlook is sunny, 
are not preferred. On the other hand, overcast skies are no problem for 
playing even if the temperatures are somewhat cool. Based on the historic 
records of these conditions and preferences, and information about a day’s 
temperature, humidity level, and outlook, classification will allow us to pre-
dict if someone prefers to play golf or not. The outcome of classification 
is to categorize the weather conditions when golf is likely to be played or 
not, quite simply: Play or Not Play (two classes). The predictors can be con-
tinuous (temperature, humidity) or categorical (sunny, cloudy, windy, etc.). 
Those beginning to explore predictive analytics tools are confused by the 
dozens of techniques that are available to address these types of classification 
problems. In this chapter we will explore several commonly used data min-
ing techniques where the idea is to develop rules, relationships, and mod-
els based on predictor information that can be applied to classify outcomes 
from new and unseen data.

We start out with fairly simple schemes and progress to more sophisticated 
techniques. Each section contains essential algorithmic details about the tech-
nique, describes how it is developed using simple examples, and finally closes 
out with implementation details using RapidMiner.

Classification
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4.1 � DECISION TREES
Decision trees (also known as classification trees) are probably one of the most 
intuitive and frequently used data mining techniques. From an analyst’s point 
of view, they are easy to set up and from a business user’s point of view they are 
easy to interpret. Classification trees, as the name implies, are used to separate 
a data set into classes belonging to the response variable. Usually the response 
variable has two classes: Yes or No (1 or 0). If the response variable has more than 
two categories, then variants of the decision tree algorithm have been developed 
that may be applied (Quinlan, 1986). In either case, classification trees are used 
when the response or target variable is categorical in nature.

Regression trees (Brieman, 1984) are similar in function to classification trees and 
may be used for numeric prediction problems, when the response variable is 
numeric or continuous: for example, predicting the price of a consumer good 
based on several input factors. Thus regression trees are applicable for prediction 
type of problems as opposed to classification. Keep in mind that in either case, the 
predictors or independent variables may be either categorical or numeric. It is 
the target variable that determines the type of decision tree needed. (Collectively, 
the algorithm for classification and regression trees is referred to as CART.)

4.1.1 � How it Works
A decision tree model takes a form of decision flowchart (or an inverted tree) 
where an attribute is tested in each node. At end of the decision tree path is a 
leaf node where a prediction is made about the target variable based on con-
ditions set forth by the decision path. The nodes split the data set into subsets. 
In a decision tree, the idea is to split the data set based on homogeneity of data. 
Let us say for example we have two variables, age and weight, that predict if a 
person is likely to sign up for a gym membership or not. In our training data 
if it was seen that 90% of the people who are older than 40 signed up, we may 
split the data into two parts: one part consisting of people older than 40 and 
the other part consisting of people under 40. The first part is now “90% pure” 
from the standpoint of which class they belong to. However we need a rigorous 
measure of impurity, which meets certain criteria, based on computing a pro-
portion of the data that belong to a class. These criteria are simple:

	 1.	� The measure of impurity of a data set must be at a maximum when 
all possible classes are equally represented. In our gym membership 
example, in the initial data set if 50% of samples belonged to “not 
signed up” and 50% of samples belonged to “signed up,” then this 
nonpartitioned raw data would have maximum impurity.

	 2.	� The measure of impurity of a data set must be zero when only one class 
is represented. For example, if we form a group of only those people 
who signed up for the membership (only one class = members), then 
this subset has “100% purity” or “0% impurity.”
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Imagine a box that can contain one of three colored 
balls inside—red, yellow, and blue, see Figure 4.1. 
Without opening the box, if you had to “predict” which 
colored ball is inside, you are basically dealing with lack 
of information or uncertainty. Now what is the highest 
number of “yes/no” questions that can be asked to reduce 
this uncertainty and thus increase our information?

	1.	� Is it red? No.
	2.	� Is it yellow? No.

Then it must be blue.

That is two questions. If there were a fourth color, green, then 
the highest number of yes/no questions is three. By extending 
this reasoning, it can be mathematically shown that the 
maximum number of binary questions needed to reduce 
uncertainty is essentially log(T), where the log is taken to 
base 2 and T is the number of possible outcomes (Meagher, 
2005) (e.g., if you have only one color, i.e., one outcome, 
then log(1) = 0, which means there is no uncertainty!)

Many real world business problems can be thought of 
as extensions to this “uncertainty reduction” example. 
For example, knowing only a handful of characteristics 
such as the length of a loan, borrower’s occupation, 
annual income, and previous credit behavior, we 
can use several of the available predictive analytics 
techniques to rank the riskiness of a potential loan, 
and by extension, the interest rate of the loan. This 
is nothing but a more sophisticated uncertainty 
reduction exercise, similar in spirit to the ball-in-a-box 
problem. Decision trees embody this problem-solving 
technique by systematically examining the available 
attributes and their impact on the eventual class 
or category of a sample. We will examine in detail 
later in this section how to predict the credit ratings 
of a bank’s customers using their demographic and 
other behavioral data and using the decision tree 
which is a practical implementation of the entropy 
principle for decision making under uncertainty.

FIGURE 4.1
Playing 20 questions with entropy.

HOW PREDICTIVE ANALYTICS CAN REDUCE UNCERTAINTY IN A BUSINESS 
CONTEXT: THE CONCEPT OF ENTROPY

Measures such as entropy or Gini index easily meet these criteria and are used 
to build decision trees as described in the following sections. Different criteria 
will build different trees through different biases, for example, information gain 
favors tree splits that contain many cases, while information gain ratio attempts 
to balance this.



66 CHAPTER 4:  Classification

Continuing with the example in the box, if there are T events with equal proba-
bility of occurrence P, then T = 1/P. Claude Shannon, who developed the math-
ematical underpinnings for information theory (Shannon, 1948), defined 
entropy as log(1/P) or –log P where P is the probability of an event occurring. 
If the probability for all events is not identical, we need a weighted expression 
and thus entropy, H, is adjusted as follows:

	H = −
∑

pklog2 (pk)	
(4.1)

where k = 1, 2, 3, …, m represent the m classes of the target variable. The pk 
represent the proportion of samples that belong to class k. For our gym mem-
bership example from earlier, there are two classes: member or nonmember. If 
our data set had 100 samples with 50% of each, then the entropy of the dataset 
is given by H = –[(0.5 log2 0.5) + (0.5 log2 0.5)] = –log2 0.5 = –(–1) = 1. On 
the other hand, if we can partition the data into two sets of 50 samples each 
that contain all members and all nonmembers, the entropy of either of these 
two partitioned sets is given by H = –1 log2 1 = 0. Any other proportion of 
samples within a data set will yield entropy values between 0 and 1.0 (which 
is the maximum). The Gini index (G) is similar to the entropy measure in its 
characteristics and is defined as

	G =
∑(

1 − pk
2)

	
(4.2)

The value of G ranges between 0 and a maximum value of 0.5, but otherwise 
has properties identical to H, and either of these formulations can be used to 
create partitions in the data (Cover, 1991).

Let us go back to the example of the golf data set introduced earlier, to 
fully understand the application of entropy concepts for creating a decision 
tree. This was the same dataset used by J. Ross Quinlan to introduce one 
of the original decision tree algorithms, the Iterative Dichotomizer 3, or ID3  
(Quinlan, 1986). The full data is shown in Table 4.1.

There are essentially two questions we need to answer at each step of the tree 
building process: where to split the data and when to stop splitting.

Classic Golf Example and How It Is Used to Build a Decision Tree
Where to split data?

There are 14 examples, with four attributes—Temperature, Humidity, Wind, 
and Outlook. The target attribute that needs to be predicted is Play with two 
classes: Yes and No. We want to understand how to build a decision tree using 
this simple data set.
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Start by partitioning the data on each of the four regular attributes. Let us start 
with Outlook. There are three categories for this variable: sunny, overcast, and 
rain. We see that when it is overcast, there are four examples where the out-
come was Play = yes for all four cases (see Figure 4.2) and so the proportion 
of examples in this case is 100% or 1.0. Thus if we split the data set here, the 
resulting four sample partition will be 100% pure for Play = yes. Mathemati-
cally for this partition, the entropy can be calculated using Eq. 4.1 as

	Houtlook:overcast = − (0/4)log2(0/4) − (4/4) log2(4/4) = 0.0	

Similarly, we can calculate the entropy in the other two situations for Outlook:

	Houtlook:sunny = − (2/5)log2(2/5) − (3/5) log2(3/5) = 0.971	

	Houtlook:rain = − (3/5)log2(3/5) − (2/5) log2(2/5) = 0.971	

For the attribute on the whole, the total “information” is calculated as the 
weighted sum of these component entropies. There are four instances of 
Outlook = overcast, thus the proportion for overcast is given by poutlook:over-

cast = 4/14. The other proportions (for Outlook = sunny and rain) are 5/14 
each:

	

Ioutlook = poutlook:overcast * Houtlook:overcast + poutlook:sunny * Houtlook:sunny

+ poutlook:rain * Houtlook:rain 	

Table 4.1  The Classic Golf Data Set

Outlook Temperature Humidity Windy Play

sunny 85 85 FALSE no
sunny 80 90 TRUE no
overcast 83 78 FALSE yes
rain 70 96 FALSE yes
rain 68 80 FALSE yes
rain 65 70 TRUE no
overcast 64 65 TRUE yes
sunny 72 95 FALSE no
sunny 69 70 FALSE yes
rain 75 80 FALSE yes
sunny 75 70 TRUE yes
overcast 72 90 TRUE yes
overcast 81 75 FALSE yes
rain 71 80 TRUE no
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	Ioutlook = (4/14) * 0 + (5/14) * 0.971 + (5/14) * 0.971 = 0.693	

Had we not partitioned the data along the three values for Outlook, the total 
information would have been simply the weighted average of the respective 
entropies for the two classes whose overall proportions were 5/14 (Play = no) 
and 9/14 (Play = yes):

	Ioutlook,no partition = − (5/14)log2(5/14) − (9/14) log2(9/14) = 0.940	

By creating these splits or partitions, we have reduced some entropy (and thus 
gained some information). This is called, aptly enough, information gain. In the 
case of Outlook, this is given simply by

	Ioutlook, no partition − Ioutlook = 0.940 − 0.693 = 0.247	

We can now compute similar information gain values for the other three attri-
butes, as shown in Table 4.2.

FIGURE 4.2
Splitting the data on the Outlook attribute.
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For numeric variables, possible split points to examine are essentially averages 
of available values. For example, the first potential split point for Humidity 
could be Average [65,70], which is 67.5, the next potential split point could be 
Average [70,75], which is 72.5, and so on. We use similar logic for the other 
numeric attribute, Temperature. The algorithm computes the information gain 
at each of these potential split points and chooses the one which maximizes 
it. Another way to approach this would be to discretize the numerical ranges, 
for example, Temperature >=80 could be considered “Hot,” between 70 to 79 
“Mild,” and less than 70 “Cool.”

From Table 4.2, it is clear that if we partition the data set into three sets along 
the three values of Outlook, we will experience the largest information gain. 
This gives the first node of the decision tree as shown in Figure 4.3. As noted 
earlier, the terminal node for the Outlook = overcast branch consists of four 
samples, all of which belong to the class Play = yes. The other two branches 
contain a mix of classes. The Outlook = rain branch has three yes results and 
the Outlook = sunny branch has three no results.

Thus not all the final partitions are 100% homogenous. This means that we 
could apply the same process for each of these subsets till we get “purer” 
results. So we revert back to the first question once again—where to split the 
data? Fortunately this was already answered for us when we computed the 

Table 4.2  Computing the Information Gain for All Attributes

Attribute Information Gain

Temperature 0.029
Humidity 0.102
Wind 0.048
Outlook 0.247

FIGURE 4.3
Splitting the golf data on the Outlook attribute yields three subsets or branches. The middle and right 
branches may be split further.
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information gain for all attributes. We simply use the other attributes that 
yielded the highest gains. Following the logic, we can next split the Outlook =  
sunny branch along Humidity (which yielded the second highest informa-
tion gain) and split the Outlook = rain branch along Wind (which yielded 
the third highest gain). The fully grown tree shown in Figure 4.4 does pre-
cisely that.

Pruning a Decision Tree: When to Stop Splitting Data?
In real world data sets, it is very unlikely that we will get terminal nodes that 
are 100% homogeneous as we just saw for the golf data set. In this case, we will 
need to instruct the algorithm when to stop. There are several situations where 
we can terminate the process:

	 n	� No attribute satisfies a minimum information gain threshold (such as 
the one computed in Table 4.2).

	 n	� A maximal depth is reached: as the tree grows larger, not only does 
interpretation get harder, but we run into a situation called “overfitting.”

	 n	� There are less than a certain number of examples in the current subtree: 
again a mechanism to prevent overfitting.

So what exactly is overfitting? Overfitting occurs when a model tries to mem-
orize the training data instead of generalizing the relationship between inputs 
and output variables. Overfitting often has the effect of performing very well 
on the training data set, but performing poorly on any new data previously 
unseen by the model. As mentioned above, overfitting by a decision tree results 
not only in a difficult to interpret model, but also provides quite a useless 
model for unseen data. To prevent overfitting, we may need to restrict tree 
growth or reduce it, using a process called pruning. All of the three stopping 
techniques mentioned above constitute what is known as pre-pruning the deci-
sion tree, because the pruning occurs before or during the growth of the tree. 
There are also methods that will not restrict the number of branches and allow 

FIGURE 4.4
A final decision tree for the golf data.
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the tree to grow as deep as the data will allow, and then trim or prune those 
branches that do not effectively change the classification error rates. This is 
called post-pruning. Post-pruning may sometimes be a better option because 
we will not miss any small but potentially significant relationships between 
attribute values and classes if we allow the tree to reach its maximum depth. 
However, one drawback with post-pruning is that it requires additional com-
putations, which may be wasted when the tree needs to be trimmed back.

We can now summarize the application of the decision tree algorithm as the 
following simple five-step process:

	 1.	� Using Shannon entropy, sort the data set into homogenous (by 
class) and nonhomogenous variables. Homogenous variables have 
low information entropy and nonhomogenous variables have high 
information entropy. This was done in the calculation of  
Ioutlook,no partition.

	 2.	� Weight the influence of each independent variable on the target or 
dependent variable using the entropy weighted averages (sometimes 
called joint entropy). This was done during the calculation of Ioutlook in 
the above example.

	 3.	� Compute the information gain, which is essentially the reduction 
in the entropy of the target variable due to its relationship with each 
independent variable. This is simply the difference between the 
information entropy found in step 1 minus the joint entropy calculated in 
step 2. This was done during the calculation of Ioutlook,no partition – Ioutlook.

	 4.	� The independent variable with the highest information gain will 
become the “root” or the first node on which the data set is divided. 
This was done during the calculation of the information gain table.

	 5.	� Repeat this process for each variable for which the Shannon entropy is 
nonzero. If the entropy of a variable is zero, then that variable becomes 
a “leaf” node.

4.1.2 � How to Implement
Before jumping into a business use case of decision trees, let us “implement” 
the decision tree model that was shown in Figure 4.4 on a small test sample 
using RapidMiner. Figure 4.5 shows the test data set, which is very much like 
our training data set but with small differences in attribute values.

We have built a decision tree model using training data set. The RapidMiner 
process of building a decision tree is shown in Figure 4.6. More over, the 
same process shows the application of the decision tree model to test data 
set. When this process is executed, and the connections are made as shown in  
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Figure 4.6, we get the table output shown in Figure 4.7. You can see that the 
model has been able to get 9 of the 14 class predictions correct and 5 of the 14 
(in boxes) wrong, which translates to about 64% accuracy.

Let us examine a more involved business application to better understand how 
to apply decision trees for real world problems. Credit scoring is a fairly com-
mon predictive analytics problem. Some types of situations where credit scor-
ing could be applied are:

	 1.	� Prospect filtering: Identify which prospects to extend credit to and 
determine how much credit would be an acceptable risk.

	 2.	� Default risk detection: Decide if a particular customer is likely to 
default on a loan.

	 3.	� Bad debt collection: Sort out those debtors who will yield a good cost 
(of collection) to benefit (of receiving payment) performance.

FIGURE 4.5
Golf: Test data has a few minor differences in attribute values from the training data.
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We will use the well-known German Credit data set from the University of 
California-Irvine Machine Learning data repository1 and describe how to 
use RapidMiner to build a decision tree for addressing a prospect filtering 
problem.

This is the first discussion of the implementation of a predictive analytics 
technique, so we will spend some extra effort in going into detail on many 
of the preliminary steps and also introduce several additional tools and 
concepts that will be required throughout the rest of this chapter and other 
chapters that focus on supervised learning methods. These are the concepts 
of splitting data into testing and training samples, and applying the trained 
model on testing (or validation data). It may also be useful to first review 
Sections 13.1 (Introduction to the GUI) and 13.2 (Data Import and Export) 
from Chapter 13 Getting Started with RapidMiner before working through 
the rest of this implementation. As a final note, we will not be discussing 
ways and means to improve the performance of a classification model using 
RapidMiner in this section, but will return to this very important part of 
predictive analytics in several later chapters, particularly in the section on 
using optimization in Chapter 13.

1http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29. All data sets used in this 
book are available at the companion website.

FIGURE 4.6
Applying the simple decision tree model on unseen golf test data.
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There are four main steps in setting up any supervised learning algorithm for a 
predictive modeling exercise:

	 1.	� Read in the cleaned and prepared data (see Chapter 2 Data Mining 
Process), typically from a spreadsheet, but the data can be from any source.

	 2.	� Split data into training and testing samples.
	 3.	� Train the decision tree using the training portion of the data set.
	 4.	� Apply the model on the testing portion of the data set to evaluate the 

performance of the model.

Step 1 may seem rather elementary, but can confuse many beginners and thus 
we will spend some time explaining this in somewhat more detail. The next 
few parts will describe other steps also in detail.

Step 1: Data Preparation
The raw data is in the format shown in Table 4.3. It consists of 1,000 sam-
ples and a total of 20 attributes and 1 label or target attribute. There are seven 
numeric attributes and the rest are categorical or qualitative, including the 

FIGURE 4.7
Results of applying the simple decision tree model.
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label, which is a binomial variable. The label attribute is called Credit Rating 
and can take the value of 1 (good) or 2 (bad). In the data 70% of the samples 
fall into the “good” credit rating class. The descriptions for the data are shown 
in Table 4.3. Most of the attributes are self-explanatory, but the raw data has 
encodings for the values of the qualitative variables. For example, attribute 4 is 
the purpose of the loan and can assume any of 10 values (A40 for new car, A41 
for used car, and so on). The full details of these encodings are provided under 
the “Data Set Description” on the UCI-ML website.

RapidMiner’s easy interface allows quick importing of spreadsheets. A useful 
feature of the interface is the panel on the left, called the “Operators.” Simply 
typing in text in the box provided automatically pulls up all available Rapid-
Miner operators that match the text. In this case, we need an operator to read 
an Excel spreadsheet, and so we simply type “excel” in the box. As you can see, 
the three Excel operators are immediately shown in Figure 4.8a: two for read-
ing and one for exporting data.

Either double-click on the Read Excel operator or drag and drop it into the 
Main Process panel—the effect is the same, see Figure 4.8b. Once the Read 
Excel operator appears in the main process window, we need to configure the 
data import process. What this means is telling RapidMiner which columns 
to import, what is contained in the columns, and if any of the columns need 
special treatment.

This is probably the most “cumbersome” part about this step. RapidMiner has 
a feature to automatically detect the type of values in each attribute (Guess 
Value types). But it is a good exercise for the analyst to make sure that the right 

Table 4.3  A View of the Raw German Credit data.

Checking 
Account 
Status

Duration in 
Month

Credit 
History Purpose

Credit 
Amount

Savings 
Account/
Bonds

Present 
Employment 
Since

Credit 
Rating

A11 6 A34 A43 1169 A65 A75 1
A12 48 A32 A43 5951 A61 A73 2
A14 12 A34 A46 2096 A61 A74 1
A11 42 A32 A42 7882 A61 A74 1
A11 24 A33 A40 4870 A61 A73 2
A14 36 A32 A46 9055 A65 A73 1
A14 24 A32 A42 2835 A63 A75 1
A12 36 A32 A41 6948 A61 A73 1
A14 12 A32 A43 3059 A64 A74 1
A12 30 A34 A40 5234 A61 A71 2
A12 12 A32 A40 1295 A61 A72 2

A11 48 A32 A49 4308 A61 A72 2
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columns are picked (or excluded) and the value types are correctly guessed. If 
not, as seen in Figure 4.9, we can change the value type to the correct setting by 
clicking on the button below the attribute name.

Once the data is imported, we must assign the target variable for analysis, also 
known as a “label.” In this case, it is the Credit Rating, as shown in Figure 4.9. 
Finally it is a good idea to “run” RapidMiner and generate results to ensure that 
all columns are read correctly.

An optional step is to convert the values from A121, A143, etc. to more mean-
ingful qualitative descriptions. This is accomplished by the use of another 
operator called Replace (Dictionary), which will replace the values with bland 
encodings such as A121 and so on with more descriptive values. We need to  
create a dictionary and supply this to RapidMiner as a comma-separated value 
(csv) file to enable this. Such a dictionary is easy to create and is shown in 

FIGURE 4.8b
Configuring the Read Excel operator.

FIGURE 4.8a
Using the Read Excel operator.
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Figure 4.10a; the setup is shown in Figure 4.10b. Note that we need to let 
RapidMiner know which column in our dictionary contains old values and 
which contains new values.

The last preprocessing step we show here is converting the numeric label (see 
Figure 4.9) into a binomial one by connecting the “exa”mple output of Replace 
(Dictionary) to a Numerical to Binominal operator. To configure the Numerical to 
Binominal operator, follow the setup shown in Figure 4.10c.

Finally, let us change the name of the label variable from Credit Rating to 
Credit Rating = Good so that it makes more sense when the integer values get 
converted to true or false after passing through the Numerical to Binomial oper-
ator. This can be done using the Rename operator. When we run this setup, we 
will generate the data set shown in Figure 4.11. Comparing to Figure 4.9, we 
will see that the label attribute is the first one shown and the values are “true” 
or “false.” We can examine the statistics tab of the results to get more infor-
mation about the distributions of individual attributes and also to check for 

FIGURE 4.9
Verifying data read-in and adjusting attribute value types if necessary.
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FIGURE 4.10a
Attribute value replacement using a dictionary.

FIGURE 4.10b
Configuring the Replace (Dictionary) operator.
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missing values and outliers. In other words, we must make sure that the data 
preparation step (Section 2.2) is properly executed before proceeding. In this 
implementation, we will not worry about this because the data set is relatively 
“clean” (for instance, there are no missing values), and we can proceed directly 
to the model development phase.

Step 2: Divide Data Set into Training and Testing Samples
As with all supervised model building, data must be separated into two 
sets: one for “training” or developing an acceptable model, and the other 
for “validating” or ensuring that the model would work equally well on a 
different data set. The standard practice is to split the available data into a 
training set and a testing or validation set. Typically the training set con-
tains 70% to 90% of the original data. The remainder is set aside for testing 
or validation.

Figure 4.12 shows how to do this in RapidMiner. The Split Validation tool sets 
up splitting, modeling, and the validation check in one operator. The utility of 
this will become very obvious as you develop experience in data mining, but 
as a beginner, this may be a bit confusing.

FIGURE 4.10c
Convert the integer Credit Rating label variable to a binomial (true or false) type.



FIGURE 4.11
Data transformed for decision tree analysis.
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Choose stratified sampling with a split ratio of 0.9 (90% training). Stratified 
sampling will ensure that both training and testing samples have equal dis-
tributions of class values. (Although not necessary, it is sometimes useful to 
check the use local random seed option, so that it is possible to compare models 
between different iterations. Fixing the random seed ensures that the same 
examples are chosen for training (and testing) subsets each time the process 
is run.) The final sub step here is to connect the output from the Numerical to 
Binominal operator output to the Split Validation operator input.2

Step 3: Modeling Operator and Parameters
We will now see how to build a decision tree model on this data. As mentioned 
earlier, the Validation operator allows us to build a model and apply it on valida-
tion data in the same step. This means that two operations—model building and 
model evaluation—must be configured using the same operator. This is accom-
plished by double-clicking on the Validation operator, which is what is called a 
“nested” operator. All nested operators in RapidMiner have two little blue over-
lapping windows on the bottom right corner. When this operator is “opened,” 
we can see that there are two parts inside (see Figure 4.13). The left box is where 
the Decision Tree operator has to be placed and the model will be built using the 
90% of training data samples. The right box is for applying this trained model 
on the remaining 10% of the testing data samples using the Apply Model operator 
and evaluating the performance of the model using the Performance operator.

Configuring the Decision Tree Model
The main parameters to pay attention to are the Criterion pull-down menu 
and the minimal gain box. This is essentially a partitioning criterion and offers 
information gain, Gini index, and gain ratio as choices. We covered the first two 
criteria earlier, and the gain ratio will be briefly explained in the next section.

2This is just a basic sampling technique and the sampling itself can involve a lot of work to validate and 
produce the correct sampling.

FIGURE 4.12
Using a relative split and a split ratio of 0.9 for training versus testing.
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As discussed earlier in this chapter, decision trees are built up in a simple five-
step process by increasing the information contained in the reduced data set 
following each split. Data by its nature contains uncertainties. We may be able 
to systematically reduce uncertainties and thus increase information by activities 
like sorting or classifying. When we have sorted or classified to achieve the great-
est reduction in uncertainty, we have basically achieved the greatest increase in 
information. We have seen how entropy is a good measure of uncertainty and 
how keeping track of it allows us to quantify information. So this brings us back 
to the options that are available within RapidMiner for splitting decision trees:

	 1.	 �Information gain: Simply put, this is computed as the information 
before the split minus the information after the split. It works fine for 
most cases, unless you have a few variables that have a large number 
of values (or classes). Information gain is biased towards choosing 
attributes with a large number of values as root nodes. This is not a 
problem, except in extreme cases. For example, each customer ID is 
unique and thus the variable has too many values (each ID is a unique 
value). A tree that is split along these lines has no predictive value.

	 2.	� Gain ratio (default): This is a modification of information gain that 
reduces its bias and is usually the best option. Gain ratio overcomes 
the problem with information gain by taking into account the number 
of branches that would result before making the split. It corrects 
information gain by taking the intrinsic information of a split into 
account. Intrinsic information can be explained using our golf example. 

FIGURE 4.13
Setting up the split validation process.
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Suppose each of the 14 examples had a unique ID attribute associated 
with them. Then the intrinsic information for the ID attribute is 
given by 14 * (–1/14 * log (1/14)) = 3.807. The gain ratio is obtained 
by dividing the information gain for an attribute by its intrinsic 
information. Clearly attributes that have very high intrinsic information 
(high uncertainty) tend to offer low gains upon splitting and hence will 
not be automatically selected.

	 3.	� Gini index: This is also used sometimes, but does not have too many 
advantages over gain ratio.

	 4.	 �Accuracy: This is also used to improve performance. The best way to 
select values for these parameters is by using many of the optimizing 
operators. This is a topic that will be covered in detail in Chapter 13.

The other important parameter is the minimal gain value. Theoretically this 
can take any range from 0 upwards. In practice, a minimal gain of 0.2 to 0.3 is 
considered good. The default is 0.1.

The other parameters (minimal size for a split, minimal leaf size, maximal depth) are 
determined by the size of the data set. In this case, we proceed with the default 
values. The best way to set these parameters is by using an optimization routine 
(which will be briefly introduced in Chapter 13 Getting Started with RapidMiner.

The last step in training the decision tree is to connect the input ports (“tra”in-
ing) and output ports (“mod”el) as shown in the left (training) box of  
Figure 4.9. The model is ready for training. Next we add two more operators, 
Apply Model and Performance (Binominal Classification), and we are ready to run 
the analysis. Configure the Performance (Binominal Classification) operator by 
selecting the accuracy, AUC, precision, and recall options.3

Remember to connect the ports correctly as this can be a source of confusion:

	 n	� “mod”el port of the Testing window to “mod” on Apply Model
	 n	� “tes”ting port of the Testing window to “unl”abeled on Apply Model
	 n	� “lab”eled port of Apply Model to “lab”eled on Performance
	 n	� “per”formance port on the Performance operator to “ave”rageable port 

on the output side of the testing box

The final step before running the model is to go back to the main perspective by 
clicking on the blue up arrow on the top left (see Figure 4.13) and connect the 
output ports “mod”el and “ave” of the Validation operator to the main outputs.

�Step 4: Process Execution and Interpretation
When the model is run as setup above, RapidMiner generates two tabs 
in the Results perspective (refer to Chapter 13 for the terminology).  

3Performance criteria such as these are explained in Chapter 8 on evaluation.
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The PerformanceVector (Performance) tab shows a confusion matrix that lists 
the model accuracy on the testing data, along with the other options selected 
above for the Performance (Binominal Classification) operator in step 3. The Tree 
(Decision Tree) tab shows a graphic of the tree that was built on the training 
data (see Figure 4.14). Several important points must be highlighted before we 
discuss the performance of this model:

	 1.	� The root node—Checking Account Status—manages to classify nearly 94% 
of the data set. This can be verified by hovering the mouse over each of the 
three terminal leaves for this node. The total occurrences (of Credit Rating = 
Good: true and false) for this node alone are 937 out of 1000. In particular, 
if someone has a Checking Account Status = no checking account, then the 
chances of them having a “true” score is 88% (= 348/394, see Figure 4.15).

	 2.	� However, the tree is unable to clearly pick out true or false cases for 
Credit Rating = Good if Checking Account Status is Less than 0 DM  

FIGURE 4.14
A decision tree model for the prospect scoring data.

= Less than 0 DM

= no checking account
Checking Account Status

Property

= Greater than 200 DM

= 0 to 200 DM= 0 to 200 DM3   = 0 to 200 DM4
true

true 139

true 164
true

rue

true

false 135

false 105

false 46
true 348

= 0 to 200 DM

Present Employment since Number of dependents

FIGURE 4.15
Predictive power of the root node of the decision tree model.
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(or Deutsche mark) (only a 51% chance of correct identification). A 
similar conclusion results if someone has 0 to 200 DM.

	 3.	� If the Checking Account Status is greater than 200 DM, then the other 
parameters come into effect and play an increasingly important role in 
deciding if someone is likely to have a “good” or “bad” credit rating.

	 4.	� However, the fact that there are numerous terminal leaves with 
frequencies of occurrence as low as 2 (for example, “Present 
Employment since”), it implies that the tree suffers from overfitting. As 
described earlier, overfitting refers to the process of building a model 
very specific to the training data that achieves close to full accuracy on 
the training data. However when this model is applied on new data 
or if the training data changes somewhat, then there is a significant 
degradation in its performance. Overfitting is a potential issue with 
all supervised models, not just decision trees. One way we could 
have avoided this situation is by changing the decision tree criterion 
“Minimal leaf size” to something like 10 (instead of the default, 2). But 
doing so, we would also lose the classification influence of all the other 
parameters, except the root node [try it!]

Now let us look at the Performance result. As seen in Figure 4.16, the model’s 
overall accuracy on the testing data is 72%. The model has a class recall of 
100% for the “true” class implying that it is able to pick out customers with 
good credit rating with 100% accuracy. However, its class recall for the “false” 
class is an abysmal 6.67%! That is, the model can only pick out a potential 
defaulter in 1 out of 15 cases!

One way to improve this performance is by penalizing false negatives by apply-
ing a cost for every such instance. This is handled by another operator called 
MetaCost, which is described in detail in Chapter 5 in the section on logis-
tic regression. When we perform a parameter search optimization by iterating 
through three of the decision tree parameters, splitting criterion, minimum 
gain ratio, and maximal tree depth, we hit upon significantly improved per-
formance as seen in Figure 4.17 below. More details on how to set this type of 
optimization are provided in Chapter 13.

When we run the best model (described by the parameters on the top row of 
the table in Figure 4.17), we obtain the confusion matrix shown in Figure 4.18. 

accuracy: 72.00%

pred. false
pred. true
class recall

true false
2
28
6.67%

true true
0
70
100.00%

100.00%
71.43%

class precision

FIGURE 4.16
Baseline model performance measures.
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Comparing this to Figure 4.16 we see that the recall for the more critical class 
(correctly identifying cases with a bad credit rating), has increased from about 
7% to 91% whereas the recall for identifying a good credit rating has fallen 
below 50%. This may be acceptable in this particular situation if the costs of 
issuing a loan to a potential defaulter are significantly higher than the costs of 
losing revenue by denying credit to a creditworthy customer. The overall accu-
racy of the model is also higher than before.

In addition to assessing the model’s performance by aggregate measures such as 
accuracy, we can also use gain/lift charts, receiver operator characteristic (ROC) 
charts, and area under ROC curve (AUC) charts. An explanation of how these 
charts are constructed and interpreted is given in Chapter 8 on model evaluation.

FIGURE 4.17
Optimizing the decision tree parameters to improve accuracy and class recall.

accuracy: 78.00%

pred. false
pred. true
class recall

true false
64
6
91.43%

true true
16
14
46.67%

80.00%
70.00%

class precision

FIGURE 4.18
Optimizing class recall for the credit default identification process.
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4.1.3 � Conclusions
Decision trees are one of the most commonly used predictive modeling algo-
rithms in practice. The reasons for this are many. Some of the distinct advan-
tages of using decision trees in many classification and prediction applications 
are explained below along with some common pitfalls.

	 n	� Easy to interpret and explain to nontechnical users

As we have seen in the few examples discussed so far, decision trees are very 
intuitive and easy to explain to nontechnical people, who are typically the con-
sumers of analytics.

	 n	� Decision trees require relatively little effort from users for data 
preparation

There are several points that add to the overall advantages of using decision 
trees. If we have a data set consisting of widely ranging attributes, for example, 
revenues recorded in millions and loan age recorded in years, many algorithms 
require scale normalization before model building and application. Such vari-
able transformations are not required with decision trees because the tree 
structure will remain the same with or without the transformation.

Another feature that saves data preparation time: missing values in training 
data will not impede partitioning the data for building trees. Decision trees 
are also not sensitive to outliers since the partitioning happens based on the 
proportion of samples within the split ranges and not on absolute values.

	 n	� Nonlinear relationships between parameters do not affect tree 
performance

As we describe in Chapter 5 on linear regression, highly nonlinear relation-
ships between variables will result in failing checks for simple regression mod-
els and thus make such models invalid. However, decision trees do not require 
any assumptions of linearity in the data. Thus, we can use them in scenarios 
where we know the parameters are nonlinearly related.

	 n	� Decision trees implicitly perform variable screening or feature 
selection

The RapidMiner process for a decision tree covered in 
the implementation section can be accessed from the 
companion site of the book at www.LearnPredictiveAn-
alytics.com. The RapidMiner process (*.rmp files) can 

be downloaded to the computer and imported to Rapid-
Miner through File > Import Process. Additionally, all 
the data sets used in this book can be downloaded from  
www.LearnPredictiveAnalytics.com

http://www.learnpredictiveanalytics.com/
http://www.learnpredictiveanalytics.com/
http://www.learnpredictiveanalytics.com/
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We will discuss in Chapter 12 why feature selection is important in predictive 
modeling and data mining. We will introduce a few common techniques for 
performing feature selection or variable screening in that chapter. But when we 
fit a decision tree to a training data set, the top few nodes on which the tree is 
split are essentially the most important variables within the data set and fea-
ture selection is completed automatically. In fact, RapidMiner has an operator 
for performing variable screening or feature selection using the information 
gain ratio.

However, all these advantages need to be tempered with one key disadvantage 
of decision trees: without proper pruning or limiting tree growth, they tend to 
overfit the training data, making them somewhat poor predictors.

4.2 � RULE INDUCTION
Rule induction is a data mining process of deducing if-then rules from a data 
set. These symbolic decision rules explain an inherent relationship between the 
attributes and class labels in the data set. Many real-life experiences are based 
on intuitive rule induction. For example, we can proclaim a rule that states “if 
it is 8 a.m. on a weekday, then highway traffic will be heavy” and “if it is 8 p.m. 
on a Sunday, then the traffic will be light.” These rules are not necessarily right 
all the time. 8 a.m. weekday traffic may be light during a holiday season. But, in 
general, these rules hold true and are deduced from real-life experience based 
on our every day observations. Rule induction provides a powerful classifica-
tion approach that can be easily understood by the general audience. Apart 
from its use in Predictive Analytics by classification of unknown data, rule 
induction is also used to describe the patterns in the data. The description is in 
the form of simple if-then rules that can be easily understood by general users.

The easiest way to extract rules from a data set is from a decision tree that is 
developed on the same data set. A decision tree splits data on every node and 
leads to the leaf where the class is identified. If we trace back from the leaf to 
the root node, we can combine all the split conditions to form a distinct rule. 
For example, in the Golf data set (Table 4.1), based on four weather condi-
tions, we can generalize a rule set to determine when a player prefers to play 
golf or not. As discussed in the decision tree section, a decision tree from Golf 
data set can be developed. Figure 4.19 shows the decision tree developed from 
the Golf data with five leaf nodes and two levels. If we trace back the first leaf 
from the left, we can extract a rule: If Outlook is overcast, then Play = yes. Simi-
larly, rules can be extracted from all the five leaves:

Rule 1: if (Outlook = overcast) then Play = yes
Rule 2: if (Outlook = rain) and (Wind = false) then Play = yes
Rule 3: if (Outlook = rain) and (Wind = true) then Play = no
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Rule 4: if (Outlook = sunny) and (Humidity > 77.5) then Play = no
Rule 5: if (Outlook = sunny) and (Humidity ≤ 77.5) then Play = yes

The set of all the five rules is called a rule set. Each individual rule ri is called a 
disjunct or classification rule. The entire rule set can be represented as

	R = {r1 ∩ r2 ∩ r3 ∩ .. rk}	

where k is the number of disjuncts in a rule set. Individual disjuncts can be 
represented as

	ri = (antecedent or condition) then (consequent)	

For example, rule r2: if (Outlook = rain) and (Wind = false) then Play = yes.

In the above example rule, (Outlook = rain) and (Wind = false) is the anteced-
ent or condition of the rule. The condition of the rule can have many attributes 
and values each separated by a logical AND operator. Each attribute and value 
test is called the conjunct of the rule. An example of a conjunct is (Outlook =  
rain). The antecedent is a group of conjuncts with the AND operator. Each 
conjunct is a node in the equivalent decision tree.

In the Golf data set, we can observe a couple of properties of the rule set 
in relation with the data set. First, the rule set is mutually exclusive. This 
means that no example record will trigger more than one rule and hence 
the outcome of the prediction is definite. However, there can be rule sets 
that are not mutually exclusive. If a record activates more than one rule in a 

FIGURE 4.19
Approaches to rule generation.



90 CHAPTER 4:  Classification

rule set and all the class predictions are the same, then there is no problem. 
If the class predictions differ, ambiguity exists on which class is the predic-
tion of the induction rule model. There are a couple of techniques used to 
resolve conflicting class prediction by more than one rule. One technique 
is to develop an ordered list of rules where if a record activates many rules, 
the first rule in the order will take precedence. A second technique is where 
each active rule can “vote” for a prediction class. The predicted class with 
highest vote is the prediction of the rule set. The rule set discussed is also 
exhaustive. This means the rule set is activated for all the combinations of 
the attribute values in the record set, not just limited to training records. If 
the rule set is not exhaustive, then a final catch all bucket rule “else Class = 
Default Class Value” can be introduced to make the rule set exhaustive.

4.2.1 � Approaches to Developing a Rule Set
Rules can be directly extracted from the data set or derived from the pre-
viously built decision trees from the same data set. Figure 4.20 shows the 
approaches to generate rules from the data set. The former approach is 
called the direct method, which is built on leveraging the relationship 
between the attribute and class label in the data set. Deriving a rule set 
from a previously built classifier decision tree model is a passive or indirect 
approach. Since building a decision tree is covered in previous section and 
the derivation of rules from the decision tree model is straightforward, we 
will focus the rest of the discussion on direct rule generation based on the 
relationship from the data. Specifically, we will focus on the sequential cov-
ering technique to build a rule set.

Input
Dataset

Direct
Extraction of

Rules

Decision
Tree Model

Tree to Rule
Conversion

FIGURE 4.20
Decision tree model for Golf data set.
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4.2.2 � How it Works
Sequential covering is an iterative procedure of extracting rules from the data 
set. The sequential covering approach attempts to find all the rules in the data 
set class by class. One specific implementation of the sequential covering 
approach is called the RIPPER, which stands for Repeated Incremental Pruning 
to Produce Error Reduction (Cohen, 1995). Consider the data set shown in 
Figure 4.21, which has two dimensions on the X and Y axis and two class labels 
marked by “+” and “–”. Following are the steps in sequential covering rules 
generation approach (Tan et al. 2005).

Step 1: Class Selection
The algorithm starts with selection of class labels one by one. The rule set 
is class-ordered where all the rules for a class are developed before moving 
on to next class. The first class is usually the least-frequent class label. From  
Figure 4.21, the least frequent class is “+” and the algorithm focuses on gener-
ating all the rules for “+” class.

Step 2: Rule Development
The objective in this step is to cover all “+” data points using classification 
rules with none or as few “–” as possible. For example, in Figure 4.22, rule 
r1 identifies the area of four “+” in the top left corner. Since this rule is 
based on simple logic operators in conjuncts, the boundary is rectilinear. 

A machine breakdown in the field almost always results 
in disruption of a manufacturing process. In a large-
scale process like an oil refinery, chemical plants, etc., 
it causes serious financial damage to the company and 
manufacturers of the machines. Let’s assume the machine 
under consideration is a motor. Rather than waiting for the 
machine to break down and react, it is much preferable to 
diagnose the problem and prevent the breakdown before 
a problem occurs. Large-scale machines track thousands 
of real-time readings from multiple parts of the machine 
(Such machines connected to networks that can gather 
readings and act based on smart logic are called Internet 
of Things (IoT).). One of the solutions is to leverage how 
these readings are trending and develop a rule base which 
says, for example, if the cylinder temperature continues to 
report more than 852ºC, then the machine will break down 
in the near future. These types of the rules are simple to 

interpret, don’t require an expert to be around to take further 
action, and can be deployed by automated systems.

Developing learned rules requires historical analysis of all 
the readings that lead up to a machine failure (Langley &  
Simon, 1995). These learned rules are different and in 
many cases supersede the rule of thumb assumed by 
the machine expert. Based on the historic readings of a 
failure event and nonfailure events, the learned rule set 
can predict the failure of the machine and hence can alert 
the operator of imminent future breakdowns. Since these 
rules are very simple to understand, these preventive 
measures can be easily deployed to line workers. This 
use case demonstrates the need of not only a predictive 
data model, but also a descriptive model where the 
inner working of the model can be easily understood 
by the users. A similar approach can be developed to 
prevent customer churn, or loan default, for example.

PREDICTING AND PREVENTING MACHINE BREAKDOWNS
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Once rule r1 is formed, the entire data points covered by r1 are eliminated 
and the next best rule is found from data sets. The algorithm grows in a 
greedy fashion using a technique called Learn-One-Rule which is described 
in the next section. One of the outcomes of greedy algorithms that start 

FIGURE 4.21
Data set with two classes and two dimensions.

FIGURE 4.22
Generation of rule r1.
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with initial configuration is that they yield local optima instead of a global 
optimum. A local optimum is a solution that is optimal in the neighbor-
hood of potential solutions, but worse than the global optimum.

Step 3: Learn-One-Rule
Each rule ri is grown by the learn-one-rule approach. Each rule starts with an 
empty rule set and conjuncts are added one by one to increase the rule accu-
racy. Rule accuracy is the ratio of amount of + covered by the rule to all records 
covered by the rule:

	
Rule accuracy A (ri) =

Correct records covered by rule

All records covered by the rule 	

Learn-one-rule starts with an empty rule set: if {} then class = “+”. Obviously 
the accuracy of this rule is the same as the proportion of + data points in the 
data set. Then the algorithm greedily adds conjuncts until the accuracy reaches 
100%. If the addition of a conjunct decreases the accuracy, then the algorithm 
looks for other conjuncts or stops and starts the iteration of the next rule.

Step 4: Next Rule
After a rule is developed, then all the data points covered by the rule are elimi-
nated from the data set. The above steps are repeated for the next rule to cover 
the rest of the “+” data points. In Figure 4.23, rule r2 is developed after the data 
points covered by r1 are eliminated.

FIGURE 4.23
Elimination of r1 data points and next rule.
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Step 5: Development of Rule Set
After the rule set is developed to identify all “+” data points, the rule model 
is evaluated with a data set used for pruning to reduce generalization errors. 
The metric used to evaluate the need for pruning is (p – n)/(p + n), where p 
is the number of positive records covered by the rule and n is the number of 
negative records covered by the rule. The conjunct is iteratively removed if it 
improves the metric. All rules to identify “+” data points are aggregated to form 
a rule group. In multi-class problem, the previous steps are repeated with for 
next class label. Since this is a two class problem, any data points not covered 
by the rule set for identifying “+” are predicted to be “–”. The outcome of the 
sequential covering or RIPPER algorithm is a set of optimized rules that can 
describe the relationship between attributes and the class label, which is also 
the predictive classification model (Saian & Ku-Mahamud, 2011).

4.2.3 � How to Implement
Rules remain the most common expression to communicate the inherent rela-
tionship in the data. There are a few different ways to generate rules from the 
data using RapidMiner. The modeling operators for rule induction are available 
in the Modeling> Classification and Regression > Rule Induction folder. The follow-
ing modeling operators available:

	 n	� Rule Induction: Commonly used generic rule induction modeler based 
on the RIPPER algorithm.

	 n	� Single Rule Induction (Attribute): Uses only one attribute in 
antecedent, usually the attribute with most predictive power.

	 n	� Single Rule Induction: Generates only one rule with if/else 
statement.

	 n	� Tree to Rule: Indirect method of rule generation that is based on 
underlying decision tree.

Single rule induction is used for quick discovery of the most dominant rule. 
Because of its simplicity, single rule modeling operators are used to establish 
a baseline performance for other classification models. We will review the 
implementation using the Rule Induction and Tree to Rule modeling operators 
in RapidMiner.

Step 1: Data Preparation
The data set we use in the implementation is the standard Iris data set (See 
Table 3.1 and Figure 3.1) with four attributes, sepal length, sepal width, petal 
length, and petal width, and a class label to identify the species of flower viz. Iris 
setosa, Iris versicolor and Iris virginica. The Iris data set is available in the Rapid-
Miner repository under Sample > Data. Since the original data set refers to the 
four attributes as a1 to a4, we use the Rename operator to change the name of 



954.2  Rule Induction

the attributes (not values) so they can be more descriptive. The Rename opera-
tor is available in Data Transformation > Name and Role modification. Like a 
decision tree, rule induction can accept both numeric and polynominal data 
types. The Iris data set is split into two equal sets for training and testing, using 
the Split Data operator (Data Transformation > Filtering > Sampling). The split 
ratio used in this implementation is 50%-50% for training and test data.

Step 2: Modeling Operator and Parameters
The Rule Induction modeling operator accepts the training data and provides 
the rule set as the model output. The rule set is the text output of if-then rules, 
along with the accuracy and coverage statistics. The following parameters are 
available in the model operator and can be configured for desired modeling 
behavior.

	 n	� Criterion: Since the algorithm takes the greedy strategy, it needs 
an evaluation criterion to indicate whether adding a new conjunct 
helps in a rule. Information gain is commonly used for RIPPER and 
is similar to information gain for decision trees. Another easy-to-use 
criterion is accuracy, which was discussed in the sequential covering 
algorithm.

	 n	� Sample ratio: This is the ratio of data used for training in the example 
set. The rest of the data is used for pruning. This sample ratio is different 
from the training/test split ratio that is used in the data preparation 
stage.

	 n	� Pureness: This is the minimal ratio of accuracy desired in the 
classification rule.

	 n	� Minimal prune benefit: This is the percentage increase in the prune 
metric required at the minimum.

The output of the model is connected to the Apply Model operator to apply 
the developed rule base against the test data set. The test data set from the 
Split Data operator is connected to the Apply Model operator. The Performance 
operator for classification is then used to create the performance vector from 
the labeled data set generated from the Apply Model operator. The process can 
be saved and executed after the output ports are connected to the result ports. 
Figure 4.24 shows the complete RapidMiner process for rule induction. The 
completed process and the data set can be downloaded from the companion 
website of the book at www.LearnPredictiveAnalytics.com.

Step 3: Results Interpretation
The results screen consists of the Rule Model window, the labeled test data set, 
and the performance vector. The performance vector is similar to the decision 
tree performance vector. The Rule Model window, shown in Figure 4.25, con-
sists of a sequence of if-then rules along with antecedents and consequents. 

http://www.LearnPredictiveAnalytics.com
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The parentheses next to each classification rule indicate the class distribution 
of the rule covered from the training data set. Note that these statistics are 
based on the training data set, not the test dataset.

The Performance Vector window provides the accuracy statistics of the predic-
tion based on the rules model for the test data set. For the Iris data set and the 
RapidMiner process shown in this example, the accuracy of prediction is 92%. 

FIGURE 4.24
RapidMiner process for rule induction.

FIGURE 4.25
Rule output for rule induction.
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Sixty-nine out of 75 test records are predicted accurately based on simple rules 
developed by the rule induction model. Not bad for a quick, easy-to-use and 
easy-to-understand model!

Alternative Approach: Tree-to-Rules
An indirect but easy way to generate a mutually exclusive and exhaustive rule 
set is to convert a decision tree to an induction rule set. Each classification rule 
can be traced from the leaf node to the root node, where each node becomes a 
conjunct and the class label of the leaf becomes the consequent. Even though 
tree-to-rules may be simple to implement, the resulting rule set may not be the 
most optimal to understand, as there are many repetitive nodes in the rule path.

In the data mining process developed in RapidMiner, we can just replace the 
previous Rule Induction operator with the Tree to Rules operator. This mod-
eling operator does not have any parameters as it simply converts the tree to 
rules. However, we have to specify the decision tree in the inner subprocess 
of the Tree to Rules operator. On double-clicking the Tree to Rules operator, we 
can see the inner process where a Decision Tree modeling operator has to be 
inserted as shown in Figures 4.26 and 4.27.

The parameters for a decision tree are the same and reviewed in Section 4.1  
of this chapter. The RapidMiner process can be saved and executed. The 
result set consists of set of rule models, usually with repetitive conjuncts in 

FIGURE 4.26
RapidMiner process for Tree to Rules operator.
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antecedents, a fingerprint of rules derived from trees. Note the difference 
between the rules that are developed for the Rule Induction operator and the 
rules developed from Tree to Rules operator. The rules generated from Tree to 
Rules are shown in Figure 4.28.

4.2.4 � Conclusion
Classification using rules provides a simple framework to identify a relation-
ship between factors and the class label that is not only used as a predictive 
model, but a descriptive model. Rules are closely associated to decision trees. 
They split the data space in rectilinear fashion and generate mutually exclusive 
and exhaustive data sets. When the rule set is not mutually exclusive, then the 
data space can be divided by complex and curved decision boundaries. Single 
rule learners are the simplest form of data mining model and indicate the 
most powerful predictor in the given set of attributes. Since rule induction is 

FIGURE 4.27
Decision Tree operator inside the subprocess for Tree to Rules.

FIGURE 4.28
Rules based on decision tree.
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a greedy algorithm, the result may not be the most globally optimal solution 
and like decision trees, rules can overlearn the example set. This scenario can 
be mitigated by pruning. Given the wide reachability of rules, rule induction 
is commonly used as a tool to express the results of data mining, even if other 
data mining algorithms are used.

4.3 � k-NEAREST NEIGHBORS
The predictive data mining using decision trees and rule induction tech-
niques were built by generalizing the relationship within the data set and 
using it to predict the outcome of new unseen data. If we need to predict 
the loan interest rate based on credit score, income level, and loan amount, 
one approach is to develop a mathematical relationship such as an equa-
tion y = f(X) based on the known data and then using the equation to 
predict interest rate for new data points. These approaches are called eager 
learners because they attempt to find a best approximation of the actual 
relationship between the input and target variables. But there is also a sim-
ple alternative approach. We can “predict” the interest rate for a given credit 
score, income level and loan amount by looking up the interest rate of other 
customer loan records with similar credit score, closely matching income 
level and loan amount from the training data set. This alternative class of 
learners adopts a blunt approach, where no “learning” is performed from 
the training data set; rather the training data set is used as a lookup table 
to match the input variables and find the outcome. These approaches are 
called lazy learners.

The underlying idea here is somewhat similar to the old adage, “birds of 
a feather flock together.” Similar records congregate in a neighborhood in 
n-dimensional space, with the same target class labels. This is the central 
logic behind the approach used by the k-nearest neighbor algorithm, or 
simply k-NN. The entire training data set is “memorized” and when unla-
beled example records need to be classified, the input attributes of the new 
unlabeled records are compared against the entire training set to find a 
closest match. The class label of the closest training record is the predicted 
class label for the unseen test record. This is a nonparametric method, 
where no generalization or attempt to find the distribution of the data set 
is made (Altman, 1992). Once the training records are in memory, the clas-
sification of the test record is very straightforward. We need to find the 
closest training record for each test record. Even though no mathematical 
generalization or rule generation is involved, finding the closet training 
record for a new unlabeled record can be a tricky problem to solve, partic-
ularly when there is no exact match of training data available for a given 
test data record.
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4.3.1 � How it Works
Any record in a data set can be visualized as a point in an n-dimensional space, 
where n is the number of attributes. While it is hard for humans to visualize 
in more than three dimensions, mathematical functions are scalable to any 
dimension and hence we can perform all the operations that can be done in 
two-dimensional spaces in the n-dimensional space. Let’s consider the stan-
dard Iris data set (150 examples, four attributes, one class label. See Figure 3.1 
and Table 3.1) and focus on two attributes, petal length and petal width. The 
scatterplot of these two dimensions is shown in Figure 4.29. The colors indi-
cate the species of Iris, the target class variable. For an unseen test data point A 
with (petal length, petal width) values (2.1, 0.5), we can deduce visually that 
the predicted species for the values of data point A would be Iris setosa. This is 
based on the fact that test data point A is in the neighborhood of other data 
points that belong to species Iris setosa. Similarly, unseen test data point B has 
values (5.7, 1.9) and is in the neighborhood of Iris versicolor, hence the test 
data point can be classified as Iris versicolor. However, if the data points are in 
between the boundaries of two species, for data points such as (5.0, 1.8), then 
the classification can be tricky because the neighborhood has more than one 
species in the vicinity. We need an efficient algorithm to resolve these corner 
cases and measure nearness of data points with more than two dimensions. 
One technique is to find the nearest training data point from an unseen test 
data point in multidimensional space, and use the target class value of the 
nearest training data point as the predicted target class for the test data point. 
This is similar to how the k-NN algorithm works.

Satellite imaging and digital image processing have 
provided a wealth of data about almost every part of the 
earth’s landscape. There is strong motivation for forestry 
departments, government agencies, universities, and 
research bodies to understand the makeup of forests, 
species of trees and their health, biodiversity, density, and 
forest condition. Field studies for developing forest databases 
and classification project are quite a tedious task and 
expensive. However, we can aid this process by leveraging 
satellite imagery, limited field data, elevation models, 
aerial photographs, and survey data (McInerney, 2005). The 
objective is to classify whether the landscape is a forest 
or not and further predict the type of trees and species.

The approach to classifying the landscape involves 
dividing the area into land units (e.g., a pixel in a 

satellite image) and creating a vector of all the 
measurements for the land unit, by combining all the 
available data sets. Each unit’s measurements are 
then compared against the measurements of known 
pre-classified units. For a given pixel, we can find a pixel 
in the pre-classified catalog, which has measurements 
very close to the measurement of the pixel to be 
predicted. Say the pre-classified pixel with the closest 
measurement corresponds to birch trees. Thus, we 
can predict the pixel area to be a birch forest. Every 
pixel’s measurement is compared to measurements of 
the pre-classified data set to determine the like pixels 
and hence same forest types. This is the core concept 
of the k-nearest neighbor algorithm that is used to 
classify the landscape areas. (Haapanen et al., 2001)

PREDICTING THE TYPE OF FOREST
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The k in the k-NN algorithm indicates the number of close training record(s) 
that need to be considered when making the prediction for an unlabeled test 
record. When k = 1, the model tries to find the first nearest record and adopts 
the class label of the first nearest training record as the predicted target class 
value. Figure 4.30 provides an example training set with two dimensions and 
the target class values as circles and triangles. The unlabeled test record is the 
dark square in the center of the scatterplot. With k = 1, the predicted target 
class value of an unlabeled test record is triangle because the closest training 
record is a triangle. But, what if the closest training record is an outlier with 
the incorrect class in the training set? Then, all the unlabeled test records 
near the outlier will get wrongly classified. To prevent this misclassification, 
we can increase the value of k to, say, 3. When k = 3, we consider the nearest 
three training records instead of one. From Figure 4.30, based on the major-
ity class of the nearest three training records, we can conclude the predicted 
class of the test record is circle. Since the class of the target record is evalu-
ated by voting, k is usually assigned an odd number for a two-class problem  
(Peterson, 2009).

FIGURE 4.29
Two-dimensional plot of Iris data set: sepal length and sepal width. Classes are stratified with colors.
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The key task in the k-NN algorithm is determination of the nearest training 
record from the unlabeled test record using a measure of proximity. Once the 
nearest training record(s) are determined, the subsequent voting of the nearest 
training records is straightforward. Let’s discuss the various techniques used to 
measure proximity.

Measure of Proximity
The effectiveness of the k-NN algorithm hinges on the determination of how 
similar or dissimilar a test record is when compared with the memorized train-
ing record. A measure of proximity between two records is measure of prox-
imity of its attributes. To quantify similarity between two records, there is a 
range of techniques available such as calculating distance, correlation, Jaccard 
similarity, and cosine similarity (Tan, Michael, & Kumar, 2005).

	 A.	� Distance
	 	� The distance between two points X (x1, x2) and Y (y1, y2) in two-

dimensional space can be calculated by Equation 4.3:

	 Distance d =
√

(x1 − y1)
2 + (x2 − y2)

2

	
(4.3)

	 	� We can generalize the two-dimensional distance formula shown in 
Equation 4.3 for n-dimensional space, where X is (x1, x2,…, xn) and Y is 
(y1, y2,…, yn), as

	Distance d =
√
(x1 − y1)

2 + (x2 − y2)
2 + • • • + (xn − yn)

2

	
(4.4)

	 	� For example, the first two records of a four-dimensional Iris data set (Fisher, 

1936) is X = (4.9, 3.0, 1.4, 0.2) and Y = (4.6, 3.1, 1.5, 0.2). The distance 

between X and Y is d =
√

(0.3)2 + (0.1)2 + (0.1)2 + (0)2 = 0.33 centimeters.
		� All the attributes in the Iris data set are homogenous in terms of 

measurements (length of flower parts) and units (centimeters). However 

Test Record

K=1 Predicted Class is
triangle

K=3 Predicted Class is
circle

FIGURE 4.30
(a) Data set with a record of unknown class. (b) Decision boundary with k = 1 around unknown class 
record. (c) Decision boundary with k = 3 around unknown test record.
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in a typical practical data set, it is common to see attributes in different 
measures (e.g., credit score, income) and varied units. One problem with 
the distance approach is that it depends on the scale and units of the 
attributes. For example, the variance in credit score between two records 
could be a few hundred points, which is minor in magnitude compared 
to the variance in income, which could on the order of thousands.

	 	� Consider two pairs of data points with credit score and annual income 
in USD. Pair A is (500, $40,000) and (600, $40,000). Pair B is (500, 
$40,000) and (500, $39,800). The first data point in both the pairs is 
same. The second data point is different than the first data point, with only 
one attribute changed. In Pair A, credit score is 600, which is significantly 
different than 500, while the income is the same. In Pair B, income is 
down by $200 when compared to the first data point, which is only a 0.5% 
change. One can rightfully conclude that the data points in Pair B are more 
similar than the data points in Pair A. However, the distance (Equation 4.4) 
between data points in Pair A is 100 and the distance between Pair B is 200! 
The variation in income overpowers the variation in credit score. The same 
phenomenon can be observed when attributes are measured in different 
units, scales, etc. To mitigate the problem caused by different measures and 
units, all the inputs of k-NN are usually normalized, where the data values 
are rescaled to fit a particular range. Normalizing all the attributes provides 
a fair comparison between them.

	 	� Normalization can be performed by a few different methods. Range 
transformation rescales values of all the attributes to specified min and 
max values, usually 0 to 1. Z-transformation attempts to rescale all the 
values by subtracting the mean from each value and dividing the result by 
the standard deviation, resulting in a transformed set of values that has a 
mean of 0 and standard deviation of 1. For example, when the Iris data 
set is normalized using Z-transformation, sepal length, which takes values 
between 4.3 and 7.9 centimeters, and has a standard deviation of 0.828, is 
transformed to values between –1.86 and 2.84, with standard deviation 1.

	 	� The distance measurement discussed so far is also called Euclidean 
distance, which is the most common distance measure for numeric 
attributes. In addition to the Euclidean, Manhattan, and Chebyshev 
distance measures are sometimes used to calculate the distance between 
two numeric data points. Let’s consider two data points X (1,2) and Y 
(3,1), as shown in Figure 4.31. The Euclidean distance between X and Y 
is the straight-line distance between X and Y, which is 2.7. Manhattan 
distance is the sum of the difference between individual attributes, rather 
than the root difference square. The Manhattan distance between X and 
Y is (3 – 1) + (2 – 1) = 3. Manhattan distance is also called the taxi cab 
distance, due to similarities of the visual path traversed by a vehicle 
around city blocks (In Figure 4.31, the total distance that is covered by 
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a cab that has to travel from X to Y in terms of city blocks is two blocks 
to the right and one block down). Chebyshev distance is the maximum 
difference between all attributes in the data set. In this example, the 
Chebyshev distance is the max of [(3 – 1), (1 – 2)] = 2. If Figure 4.31 
were a chess board, Chebyshev distance would be the minimum number 
of moves required by the king to go from one position to another and 
Manhattan distance is the minimum number of squares covered by the 
move of a rook from one position to another.

	 	� All three aforementioned distance measures can be further generalized 
by one formula, the Minkowski distance measure. The distance between 
two points X (x1, x2,…, xn) and Y (y1, y2,…, yn) in n-dimensional space is 
given by Equation 4.5:

	
d =

(∑n

i = 1
| xi − yi |

p
) 1

p

	
(4.5)

	 	� When p = 1, the distance measure is the Manhattan distance, when  
p = 2 the distance measure is the Euclidean distance, and when p =∞ the 
distance measure is the Chebyshev distance. p is also called the norm and 
Equation 4.5 is called the p-norm distance. The choice of distance measure 
depends on the data (Grabusts, 2011). The Euclidean measure is the most 
commonly used distance measure for numeric data. Manhattan distance 
(or Hamming distance) is used for binary attributes. For an unknown (no 
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FIGURE 4.31
Distance measures.
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prior knowledge) data set, there is no rule-of-thumb distance measure. 
Euclidean distance would be a good start and the model can be tested with 
a selection of other distance measures and the corresponding performance.

	 	� Once the nearest k neighbors are determined, the process of determining 
the predicted target class is straightforward. The predicted target class is 
the majority class of the nearest k neighbors. Equation 4.6 provides the 
prediction of the k-NN algorithm:

	y
′

= maximum class (y1,y2, ⋯ ,yk)	 (4.6)

where y
′

 is the predicted target class of the test data point and yi is the 
class of ith neighbor ni.

	 	� Weights
	 	� The premise of the k-NN algorithm is that data points closer to each other 

are similar and hence they have the same target class labels. When k is 
more than one, it can be argued that the closest neighbors should have 
more say in the outcome of the predicted target class than the farther 
neighbors (Hill & Lewicki, 2007). The far away neighbors have less 
influence in determining the final class outcome. This can be accomplished 
by assigned weights for all the neighbors, with the weights increasing as 
the neighbors get closer to the data point. The weights are included in the 
final multivoting step, where the predicted class is calculated. Weights (wi) 
should satisfy two conditions: they should be proportional to the distance 
of the data point from the neighbor and the sum of all weights should be 
equal to one. One of the calculations for weights shown in Equation 4.7 
follows an exponential decay based on distance:

	
wi =

e − d(x,ni)

∑k
i = 1e − d(x,ni)

	 (4.7)

where wi is the weight of ith neighbor ni, k the is total number of neighbors, 
and x is the test data point. The weight is used in predicting target class y’:

	 y
′

= maximum class (w1 * y1,w2 * y2, ⋯ ,wk * yk)	 (4.8)
where yi is the class outcome of neighbor ni.

	 	� The distance measure works well for numeric attributes. However, if the 
attribute is categorical (nominal), the distance between two points is 
either 0 or 1. If the attribute values are the same, the distance is 0 and if 
the attribute values are different, the distance is 1. An example distance 
(overcast, sunny) = 1 and distance (sunny, sunny) = 0. If the attribute 
is ordinal with more than two values, then the ordinal values can be 
converted to the integer data type with values 0, 1, 2, …, n – 1 and the 
converted attribute can be treated as a numeric attribute for distance 
calculation. Obviously, converting ordinal into numeric retains more 
information than using it as a categorical data type, where the distance 
value is either 0 or 1.
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	 B.	� Correlation similarity
	 	� Correlation between two data points X and Y is the measure of the linear 

relationship between the attributes X and Y. Pearson correlation takes 
the value from –1 (perfect negative correlation) to +1 (perfect positive 
correlation) with the value of zero being no correlation between X and 
Y. Since correlation is a measure of “linear” relationship, a zero value 
doesn’t mean there is no relationship. It just means that there is no 
linear relationship, but there may be a quadratic or any other higher 
degree relationship between the data points. Also, we are now exploring 
correlation between one data point and another. This is quite different from 
correlation between variables. Pearson correlation between two data points 
X and Y is given by

Correlation (X , Y) =
sxy

sx * sy
	 (4.9)

where Sxy is the covariance of X and Y, which is calculated as 

sxy =
1

n − 1

∑n

i = 1
(xi − x) (yi − y) and sx and sx are the standard deviation 

of X and Y, respectively. The Pearson correlation of two data points X 

(1,2,3,4,5) and Y (10,15,35,40,55) is 0.98.

	 C.	� Simple matching coefficient
	 	� The simple matching coefficient (SMC) is used when data sets have binary 

attributes. For example, let X be (1,1,0,0,1,1,0) and Y be (1,0,0,1,1,0,0). 
We can measure the similarity between these two data points based on 
simultaneous occurrence of 0 or 1 with respect to total occurrences. The 
simple matching coefficient for X and Y can be calculated as follows:

Simple matching coefficient (SMC) = matching occurences
total occurences

= m00 + m11
m10 + m01 + m11 + m00 	 (4.10)

where
m11 = occurrences where X = is 1 and Y = is 1 = 2
m10 = occurrences where X = is 1 and Y = is 0 = 2
m01 = occurrences where X = is 0 and Y = is 1 = 1
m00 = occurrences where X = is 0 and Y = is 0 = 2

Simple matching coefficient (SMC) = matching occurences
total occurences

= m00 + m11
m10 + m01 + m11 + m00

= 4
7

	 D.	� Jaccard similarity
	 	� If X and Y represent two text documents, each word can be an attribute 

in a data set called a term document matrix or document vector. Each 
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record in the document data set corresponds to a separate document or 
a text blob. This is explained in greater detail in Chapter 9 Text Mining. 
In this application, the number of attributes would be very large number, 
often in the thousands. When comparing two documents X and Y, most of 
the attribute values will be zero. This means that two documents do not 
contain the same rare words. In this instance, what is interesting is that 
the comparison of the occurrence of the same word and nonoccurrence of 
the same word doesn’t convey any information and we can ignore it. The 
Jaccard similarity measure is similar to the simple matching similarity but 
the nonoccurrence frequency is ignored from the calculation. For the same 
example X (1,1,0,0,1,1,0) and Y (1,0,0,1,1,0,0),

� (4.11)

	 E.	� Cosine similarity
 	 We continue the example of the document vectors, where attributes 

represent either the presence or absence of a word, which takes a binary 
form of either 1 or 0. It is possible to construct a more informational vector 
with the number of occurrences in the document, instead of occurrences 
and nonoccurrences denoted by 1 and 0 respectively. Document data 
set are usually long vectors with thousands of variables or attributes. For 
simplicity, consider the example of the vectors with X (1,2,0,0,3,4,0) and Y 
(5,0,0,6,7,0,0). The cosine similarity measure for two data points is given by

� (4.12)

where x.y is the dot product of the x and y vectors with 

 For this example

	
x · y =

√
1 * 5 + 2 * 0 + 0 * 0 + 0 * 6 + 3 * 7 + 4 * 0 + 0 * 0 = 5.1	

‖ x ‖ =
√

1 * 1 + 2 * 2 + 0 * 0 + 0 * 0 + 3 * 3 + 4 * 4 + 0 * 0 = 5.5	
‖ y ‖ =

√
5 * 5 + 0 * 0 + 0 * 0 + 6 * 6 + 7 * 7 + 0 * 0 + 0 * 0 = 10.5	

Cosine similarity ( | x · y | ) =
x · y

‖ x ‖ ‖ y ‖
=

5.1

5.5 * 10.5
= 0.08

As with distance measures, there are a few similarity measures available 
for a categorical attribute in a k-NN implementation. The cosine 
similarity measure is one of the most used similarity measures, but the 
determination of the optimal measure comes down to the data structures. 
The choice of distance or similarity measure can also be parameterized, 
where multiple models are created with each different measure. The 



108 CHAPTER 4:  Classification

model with a distance measure that best fits the data with the smallest 
generalization error can be the appropriate distance measure for the data.

4.3.2 � How to Implement
Implementation of lazy learners is the most straightforward process amongst 
all the data mining methods. Since the key functionality here is referencing or 
looking up the training data set, we could implement the entire algorithm in 
spreadsheet software like MS Excel, using lookup functions. Of course, if the 
complexity of the distance calculation or number of attributes rises, then we 
may need to rely on data mining tools or programming languages. In Rapid-
Miner, k-NN implementation is similar to other classification and regression 
process, with data preparation, modeling, and performance evaluation opera-
tors. The modeling step memorizes all the training records and accepts input 
in the form of real and nominal values. The output of this modeling step is just 
the data set of all the training records.

Step 1: Data Preparation
The data set used in this example is the standard Iris data set with 150 examples 
and four numeric attributes. First we need to normalize all attributes using the Nor-
malize operator, from the Data Transformation > Value Modification > Numerical 
Value Modification folder. The Normalize operator accepts numeric attributes and 
outputs transformed numeric attributes. The user can specify one of four normal-
ization methods in the parameter configurations: Z-transformation (most com-
monly used), range transformation, proportion transformation, and interquartile 
range. In this example, Z-transformation is used because we are standardizing all 
attributes to same standard deviation.

The data set is then split into two equal exclusive data sets using the Split Data 
operator. Split Data (from Data Transformation > Filtering > Sampling) is used 
to partition one data set into multiple data sets. The proportion of the partition 
and the sampling method can be specified in the parameter configuration of 
the split operator. For this example, the data is split equally between the train-
ing and test sets using shuffled sampling. One half of the data set is used as 
training data for developing the k-NN model and the other half of the data set 
is used to test the validity of the model.

Step 2: Modeling Operator and Parameters
The k-NN modeling operator is available in Modeling > Classification > Lazy 
Modeling. The following parameters can be configured in the operator settings:

	 n	� k: The value of k in k-NN can be configured. This defaults to one nearest 
neighbor. This example uses k = 3.

	 n	� Weighted Vote: In the case of k > 1, this setting determines if the 
algorithm needs to take into consideration the distance value while 
predicting the class value of the test record.
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	 n	� Measure Types: There are more than two dozen distance measures available 
in RapidMiner. These measures are grouped in Measure Types. The selection 
of Measure Types drives the options for the next parameter (Measure).

	 n	� Measure: This parameter selects the actual measure like Euclidean 
distance, Manhattan distance, and so on. The selection of the measure 
will put restrictions on the type of input the model receives. Depending 
on the weighting measure, the input data type choices will be limited 
and hence the data type conversion is required if the input data 
contains attributes that are not compatible with that measure.

Step 3: Evaluation
Similar to other classification model implementations, we need to apply the 
model to test the data set, so the effectiveness of the model can be evaluated.  
Figure 4.32 shows the RapidMiner process where the initial Iris data set is split 
using a split operator. A random 75 of the initial 150 records are used to build the 
k-NN model and the rest of the data is the test data set. The Apply Model operator 
takes the test data and applies the k-NN model to predict the class type of the 
species. The Performance operator is then used to compare the predicted class with 
the labeled class for all of the test records. The complete RapidMiner process can 
be downloaded from the companion website www.LearnPredictiveAnalytics.com.

FIGURE 4.32
Data mining process for k-NN algorithm.

http://www.learnpredictiveanalytics.com/
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Step 4: Execution and Interpretation
After the output from the Performance operator has been connected to the result 
ports, as shown in Figure 4.32, the model can be executed. The following result 
output is observed.

	 1.	� k-NN model: The model for k-NN is just the set of training records. 
Hence no additional information is provided in this view, apart from 
the statistics of training records. Figure 4.33 shows the output model.

	 2.	� Performance vector: The output of the Performance operator provides 
the confusion matrix with correct and incorrect predictions for all of the 
test data set. The test set had 75 records. Figure 4.34 shows the accurate 
prediction of 71 records (sum of diagonal cells in the matrix) and 4 
incorrect predictions.

4.3.3 � Conclusion
The k-NN model requires normalization to avoid any bias by any attribute 
that has large or small units in the scale. The model is quite robust when there 
is any missing attribute value in the test record. If the value in the test record 
is missing, the entire attribute is ignored in the model, and still the model 

FIGURE 4.33
k-NN model output.

FIGURE 4.34
Performance vector for k-NN model.
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can function with reasonable accuracy. In the implementation example, if the 
sepal length of a test record is not known, then the sepal length is ignored in 
the model. When an attribute value is missing, k-NN becomes a three-dimen-
sional model instead of the regular four dimensions.

As a lazy learner, the relationship between input and output cannot be 
explained, as the model is just a memorized set of all training records. There is 
no generalization or abstraction of the relationship. Eager learners are better at 
explaining the relationship and providing a description of the model.

Model building in k-NN is just memorizing and doesn’t require much time. 
But, when a new unlabeled record is to be classified, the algorithm needs to 
find the distance between the test record and all training records. This process 
can get very expensive, depending on the size of training set and the number of 
attributes. A few sophisticated k-NN implementations index the records so that 
it is easy to search and calculate the distance. We can also convert the actual 
“real” numbers to ranges so as to make it easy to index and compare it against 
the test record. However, k-NN is difficult to use in time-sensitive applications 
like serving an online advertisement or real-time fraud detection.

k-NN models can handle categorical inputs, but the distance between cate-
gorical attribute values is either 1, when the attribute values are different or 0, 
when the attribute values are same. Ordinal values can be converted to integers 
so that we can better leverage the distance function. Although the k-NN model 
is not good at generalizing the input-output relationship, it is still quite an 
effective model for leveraging existing relationships in the training records. For 
good quality outcomes, it requires a significant number of training records 
with the maximum possible permutations of input attributes.

4.4 � NAÏVE BAYESIAN
The data mining algorithms used for classification tasks are quite diverse. The 
objective of these algorithms is the same—prediction of a target variable. But,  
the method of predicting is drawn from a range of multidisciplinary techniques. The 
naïve Bayes algorithm finds its roots in statistics and probability theory. In general, 
classification techniques try to predict class labels based on attributes by best 
approximating the relationship between input and output variables. Every day, we 
mentally estimate a myriad of outcomes based on past evidence. Consider the pro-
cess of guessing commuting time to work. First, commute time depends heavily on 
when you are traveling. If you are traveling during peak hours, most likely the com-
mute is going to be longer. Weather conditions like rain, snow, or dense fog will 
slow down the commute. If the day is a school holiday, like summer break, then 
the commute will be lighter than on school days. If there is any planned road work  
ahead, the commute usually takes longer. When more than one adverse factor is at 
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play, then the commute will be even longer than if it is just one isolated factor. All 
this if-then knowledge is based on previous experience of commuting when one 
or more factors come into play. Our experience creates a model in our brain and 
we mentally run the model before pulling out of the driveway!

Let’s take the case of defaults in home mortgages and assume the average overall 
default rate is 2%. The likelihood of an average person defaulting on their mort-
gage loan is 2%. However, if a given individual’s credit history is above average (or 
excellent), then the likelihood of their default would be less than average. Further-
more, if we know that the person’s annual salary is above average with respect to 
loan value, then the likelihood of default falls further. As we obtain more evidence 
on the factors that impact the outcome, we can make improved guesses about the 
outcome using probability theory. The naïve Bayesian algorithm basically lever-
ages the probabilistic relationship between the factors (attributes) and the class 
label (outcome). The algorithm makes a strong and sometimes naïve assumption 
of independence between the attributes, thus its name. The independence assump-
tion between attributes may not always hold true. In some cases, we can assume 
annual income and credit score are independent of each other. However, in many 
cases we just don’t know. If one of the factors for the default rate is home value, 
then we have a scenario where both the annual income and home value factors 
are correlated and thus not independent. Homeowners with high income tend 
to buy more expensive houses. The independence assumption doesn’t hold true 
always, but the simplicity and robustness of the algorithm offsets the limitation 
introduced by the independence assumption.

Spam is unsolicited bulk email sent to a wide number 
of email users. At best it is an annoyance to recipients 
but many of the spam emails hide a malicious intent 
by hosting false advertisements or redirecting clicks 
to phishing sites. Filtering spam email is one of the 
essential features provided by email service providers 
and administrators. The key challenge is balance 
between incorrectly flagging a legitimate email  
as spam (false positive) versus not catching all the  
spam messages. There is no perfect spam filtering 
solution and spam detecting is a catch-up game.  
The spammers always try to deceive and outsmart  
the spam filters and email administrators fortify the 
filters for various new spam scenarios. Automated  
spam filtering based on algorithms provides a  
promising solution in containing spam and a learning  
framework to update the filtering solutions  
(Prosess Software, 2013).

Some words occur in spam emails more often than in 
legitimate email messages. For example, the probability 
of occurrence for words like free, mortgage, credit, 
sale, Viagra, etc. is higher in spam mails than in normal 
emails. We can calculate the exact probabilities if we have 
a sample of previously known spam emails and regular 
emails. Based on the known word probabilities, we can 
compute the overall probability of an email being spam 
based on all the words in the email and the probability of 
each word being in spam versus regular emails. This is the 
foundation of Bayesian spam filtering systems (Zdziarski, 
2005). Any wrongly classified spam messages that are 
subsequently reclassified by the user is an opportunity to 
refine the model, making spam filtering adaptive to new 
spam techniques. Though recent spam reduction uses 
a combination of different algorithms, Bayesian-based 
spam filtering remains one of the foundational elements 
of spam prediction systems (Sahami et al., 1998).

PREDICTING AND FILTERING SPAM EMAIL
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4.4.1 � How it Works
The naïve Bayesian algorithm is built on Bayes’ theorem, named after Reverend 
Thomas Bayes. Bayes’ work is described in “Essay Towards Solving a Problem in 
the Doctrine of Chances” (1763), published posthumously in the Philosophical 
Transactions of the Royal Society of London by Richard Price. Bayes’ theorem is 
one of the most influential and important concepts in statistics and probability 
theory. It provides a mathematical expression for how a degree of subjective 
belief changes to account for new evidence. First, let’s discuss the terminology 
used in Bayes’ theorem.

Assume X is the evidence (or factors or attribute set) and Y is the outcome (or tar-
get or label class). Here X is a set, not individual attributes, hence X = {X1, X2, X3, 
…, Xn}, where Xi is an individual attribute, such as credit rating. The probability of 
outcome P(Y) is called prior probability, which can be calculated from the data set. 
Prior probability shows the likelihood of an outcome in a given data set. For exam-
ple, in the mortgage case, P(Y) is the default rate of a home mortgage, which is 
2%. P(Y|X) is called the conditional probability, which provides the probability of an 
outcome given the evidence when we know the value of X. Again, using the mort-
gage example, P(Y|X) is the average rate of default given that an individual’s credit 
history is known. If the credit history is excellent, then the probability of default 
is likely to be less than 2%. P(Y|X) is also called posterior probability. Calculating 
posterior probability is the objective of predictive analytics using Bayes’ theorem. 
This is the likelihood of an outcome as we learn the values of the input attributes.

Bayes’ theorem states that

� (4.13)

P(X|Y) is another conditional probability, called the class conditional probabil-
ity. P(X|Y) is the probability that an attribute assumes a particular value given 
the class label. Like P(Y), P(X|Y) can be calculated from the data set as well. 
If we know the training set of loan defaults, we can calculate the probability 
of an “excellent” credit rating given that the default is a “yes.” As indicated in 
Bayes’ theorem, class conditional probability is crucial in calculating posterior 
probability. P(X) is basically the probability of the evidence. In the mortgage 
example, this is simply the proportion of individuals with a given credit rating. 
To classify a new record, we can compute P(Y|X) for each class of Y and see 
which probability “wins.” Class label Y with the highest value of P(Y|X) wins 
for a particular attribute value X. Since P(X) is the same for every class value of 
the outcome, we don’t have to calculate this and assume it as a constant. More 
generally, in an example set with n attributes X = {X1, X2, X3 … Xn},

� (4.14)
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If we know how to calculate class conditional probability P(X|Y) or 

, then it is easy to calculate posterior probability P(Y|X). Since 

P (X) is constant for every value of Y, it is enough to calculate the numerator of 
the equation  for every class value.

To further explain how the naïve Bayesian algorithm works, let’s use the modi-
fied Golf data set shown in Table 4.4. The Golf table is an artificial data set with 
four attributes and one class label. Note that we are using the nominal data 
table for easier explanation (temperature and humidity have been converted 
from the numeric type). In Bayesian terms, weather condition is the evidence 
and decision to play or not play is the belief. Altogether there are 14 examples 
with 5 examples of Play = no and nine examples of Play = yes. The objective 
is to predict if the player will Play (yes or no), given the information about a 
few weather-related measures, based on learning from the data set in Table 4.4. 
Here is the step-by-step explanation of how the Bayesian model works.

Step 1: Calculating Prior Probability P(Y)
Prior probability P(Y) is the probability of an outcome. In this example set 
there are two possible outcomes: Play = yes and Play = no. From Table 4.4, out 
of 14 records there are 5 records with the “no” class and 9 records with the 
“Yes” class. The probability of outcome is

P(Y = no) = 5/14
P(Y = yes) = 9/14

Table 4.4  Golf Data Set with Modified Temperature and Humidity Attributes

No. Temperature X1 Humidity X2 Outlook X3 Wind X4 Play (Class Label) Y

1 high med sunny false no
2 high high sunny true no
3 low low rain true no
4 med high sunny false no
5 low med rain true no
6 high med overcast false yes
7 low high rain false yes
8 low med rain false yes
9 low low overcast true yes

10 low low sunny false yes
11 med med rain false yes
12 med low sunny true yes
13 med high overcast true yes
14 high low overcast false yes
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Since the probability of an outcome is calculated from the data set, it is import-
ant that the data set used for data mining is representative of the population, if 
sampling is used. A class-stratified sampling of data from the population will 
not be compatible for naïve Bayesian modeling.

Step 2: Calculating Class Conditional Probability P (Xi |Y)
Class conditional probability is the probability of each attribute value for an 
attribute, for each outcome value. This calculation is repeated for all the attri-
butes: Temperature (X1), Humidity (X2), Outlook (X3), and Wind(X4), and for 
every distinct outcome value. Let’s calculate the class conditional probability of 
Temperature (X1). For each value of the Temperature attribute, we can calculate 
P(X1|Y = no) and P(X1|Y = yes) by constructing a probability table as shown in 
Table 4.5. From the data set there are five Y = no records and nine Y = yes records. 
Out of the five Y = no records, we can also calculate the probability of occurrence 
when the temperature is high, medium, and low. The values will be 2/5, 1/5, 
and 2/5, respectively. We can repeat the same process when the outcome Y = yes.

Similarly, we can repeat the calculation to find the class conditional probabil-
ity for the other three attributes: Humidity (X2), Outlook (X3), and Wind(X4). 
This class conditional probability table is shown in Table 4.6.

Table 4.5  Class Conditional Probability of Temperature

Temperature (X1) P(X1|Y = no) P(X1|Y = yes)

high 2/5 2/9
med 1/5 3/9
low 2/5 4/9

Table 4.6  Conditional Probability of Humidity, Outlook, and Wind

Humidity (X2) P(X1|Y = no) P(X1|Y = yes)

high 2/5 2/9
low 1/5 4/9
med 2/5 3/9

Outlook (X3) P(X1|Y = no) P(X1|Y = yes)

overcast 0/5 4/9
Rain 2/5 3/9
sunny 3/5 2/9

Wind (X4) P(X1|Y = no) P(X1|Y = yes)

false 2/5 6/9
true 3/5 3/9
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Step 3: Predicting the Outcome Using Bayes’ Theorem
We are all set with preparing class conditional probability tables and now 
they can be used in the future prediction task. If a new, unlabeled test record  
(Table 4.7) has the attribute values Temperature= high, Humidity = low, 
Outlook = sunny, and Wind = false, what would be the class label prediction? 
Play = Yes or No? The outcome class can be predicted based on Bayes’ theo-
rem by calculating the posterior probability P(Y|X) for both values of Y. Once  
P(Y = yes|X) and P(Y = no|X) are calculated, we can determine which outcome 
has higher probability and the predicted outcome is the one that has the high-
est probability. While calculating both class conditional probabilities using 

Equation 4.14, it is sufficient to just calculate  as P(X) is 
going to be same for both the outcome classes.

P(Y = yes|X) = P (Y) *
∏n

i = 1P (Xi | Y)
P (X)

= P(Y = yes) * {P(Temp = high|Y = yes) * P(Humidity = low|Y = yes) * 
P(Outlook = sunny| Y = yes) * P(Wind = false|Y = yes)}/P(X)
= 9/14 * {2/9 * 4/9 * 2/9 * 6/9}/P(X)
= 0.0094/P(X)
P(Y = no|X) = 5/14 * {2/5 * 4/5 * 3/5 * 2/5}
= 0.0274/P(X)

We normalize both the estimates by dividing both by (0.0094 + 0.027) to get

Likelihood of (Play = yes) = 
0.0094

0.0274 + 0.0094
 = 26%

Likelihood of (Play = no) = 0.0094

0.0274 + 0.0094
 = 74%

In this case P(Y = yes|X) < P(Y = no|X), hence the prediction for the unlabeled 
test record will be Play = no.

Bayesian modeling is relatively simple to understand once you get past the 
notation (for beginners) and easy to implement in practically any programing 
language. The computation for model building is quite simple and involves 
the creation of a lookup table of probabilities. Bayesian modeling is quite 
robust in handling missing values. If the test example set does not contain a 

Table 4.7  Test Record

No. Temperature X1 Humidity X2 Outlook X3 Wind X4 Play (Class Label) Y

Unlabeled Test high low sunny false ?
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value, let’s suppose temperature is not calculated in the example set, the Bayes-
ian model simply omits the corresponding class conditional probability for 
the outcomes. Having missing values in the test set would be difficult to han-
dle in decision trees and regression algorithms, particularly when the missing 
attribute is used higher up in the node of the decision tree or has more weight 
in regression. Even though the naïve Bayes algorithm is quite robust to missing 
attributes, it does have a few limitations. Here are couple of the most signifi-
cant limitations and methods of mitigation.

Issue 1: Incomplete Training Set
Problems arise when an attribute value in the testing record has no example in 
the training record. In the Golf dataset (Table 4.4), if a test example consists of 
the attribute value Outlook = overcast, the probability of P(Outlook = overcast| 
Y = no) is zero. Even if one of the attribute’s class conditional probabilities is 
zero, by nature of the Bayesian equation, the entire posterior probability will 
be zero.

P(Y = no|X) = P(Y = No) * {P(Temp = high|Y = no) * P(Humidity =  
low| Y = no) * P(Outlook = overcast|Y = no) * P(Wind = false|Y = no)}/P(X)
= 5/14 * {2/5 * 1/5 * 0 * 2/5}/P(X)
= 0

In this case P(Y = yes|X) > P(Y = no|X), and the test example will be classified 
as Play = yes. If there are no training records for any other attribute value, like 
Temperature = low for outcome yes, then probability of both outcomes, P(Y = 
no|X) and P(Y = yes|X), will also be zero and an arbitrary prediction shall be 
made because of the dilemma.

To mitigate this problem, we can assign small default probabilities for the 
missing records instead of zero. With this, the absence of an attribute value 
doesn’t wipe out the value of P(X|Y), albeit it will reduce the probability to 
small number. This technique is called Laplace correction. Laplace correction 
adds a controlled error in all class conditional probabilities.

In the above data set, if the example set contains Outlook = overcast, then 
P(X|Y = no) = 0. The class conditional probability for all the three values for 
Outlook is 0/5, 2/5, and 3/5, Y = no. We can add controlled error by adding 1 
to all numerators and 3 for all denominators, so the class conditional proba-
bilities are 1/8, 3/8 and 4/8. The sum of all the class conditional probabilities 
is still 1. Generically, the Laplace correction is given by

corrected probability P (Xi | Y) =
0 + μp3

5 + μ
,
2 + μp2

5 + μ
,
3 + μp2

5 + μ
	 (4.15)

where p1 + p2 + p3 = 1 and μ is the correction.
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Issue 2: Continuous Attributes
If an attribute has continuous numeric values instead of nominal values, the 
solution discussed above will not work. We can always convert the contin-
uous values to nominal values by discretization and use the same approach 
as discussed. But discretization requires exercising subjective judgment on 
the bucketing range, leading to loss of information. Instead, we can preserve 
the continuous values as such and use the probability density function. We 
assume the probability distribution for a numerical attribute follows a normal 
or Gaussian distribution. If the attribute value is known to follow some other 
distribution, such as Poisson, the equivalent probability density function can 
be used. The probability density function for a normal distribution is given by

	
f (x) =

1
√

2πσ
e
(x − μ)2

2σ2

	 (4.16)

where μ is the mean and σ  is the standard deviation of the sample.

In the updated Golf data set shown in Table 4.8, temperature and humidity are 
continuous attributes. In such a situation, we compute the mean and standard 
deviation for both class labels (Play = yes and Play = no) for temperature and 
humidity (Table 4.9).

If an unlabeled test record has a Humidity value of 78, we can compute the 
probability density using the Equation 4.16, for both outcomes. For outcome 

Table 4.8  Golf Data Set with Continuous Attributes

No. Outlook X1 Humidity X2 Temperature X3 Wind X4 Play Y

1 sunny 85 85 false no
2 sunny 80 90 true no
6 rain 65 70 true no
8 sunny 72 95 false no

14 rain 71 80 true no
3 overcast 83 78 false yes
4 rain 70 96 false yes
5 rain 68 80 false yes
7 overcast 64 65 true yes
9 sunny 69 70 false yes

10 rain 75 80 false yes
11 sunny 75 70 true yes
12 overcast 72 90 true yes
13 overcast 81 75 false yes
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Play = yes, if we plug in the values x = 78, μ = 73, and σ  = 6.16 to the probability 
density function, the equation renders the value 0.04. Similarly for outcome 
Play = no, we can plug in x = 78, μ = 74.6, σ  = 7.89 and compute the probability 
density to obtain 0.05:

P(temperature = 78|Y = yes) = 0.04
P(temperature = 78|Y = no) = 0.05

The above values are probability densities and not probabilities. In a contin-
uous scale, the probability of temperature being exactly at a particular value 
is zero. Instead, the probability is computed for a range, such as temperatures 
from 77.5 to 78.5 units. Since the same range is used for computing the proba-
bility density for both the outcomes, Play = yes and Play = no, it is not necessary 
to compute the actual probability. Hence we can substitute the above values in 
the Bayesian equation 4.14 for calculating class conditional probability P(X|Y).

Issue 3: Attribute Independence
One of the fundamental assumptions in the naïve Bayesian model is attribute 
independence. Bayes’ theorem is guaranteed only for independent attributes. 
In many real-life cases, this is quite a stringent condition to deal with. This 
is why the technique is called “naïve” Bayesian, because it assumes attributes 
independence. However, in practice the naïve Bayesian model works fine 
with slightly correlated features (Rish, 2001). We can handle this problem 
by pre-processing the data. Before applying the naïve Bayesian algorithm, it 
makes sense to remove strongly correlated attributes. In the case of all numeric 
attributes, this can be achieved by computing a weighted correlation matrix. 
An advanced application of Bayes’ theorem, called a Bayesian belief network, 
is designed to handle data sets with attribute dependencies.

The independence of two categorical (nominal) attributes can be tested by 
the chi-square (χ2) test for independence. The chi-square test can be calculated 
by creating a contingency table of observed frequency like the one shown in 
Table 4.10A. A contingency table is a simple cross tab of two attributes under 
consideration.

Table 4.9  Mean and Deviation for Continuous Attributes

Play Value Humidity X2 Temperature X3

Y = no Mean 74.60 84.00
Deviation 7.89 9.62

Y = yes Mean 73.00 78.22
Deviation 6.16 9.88
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A contingency table of expected frequency (Table 4.10b) can also be created 
based on the following equation:

	
Er,c =

(row total * column total)

(table total) 	 (4.17)

The chi-square statistic (χ2) calculates the sum of the difference between these 
two tables. χ2 is calculated by Equation 4.18. In this equation, O is observed 
frequency and E is expected frequency:

	χ
2 =

∑
(O − E)2/E	 (4.18)

If the chi-square statistic (χ2) is less than the critical value calculated from the 
chi-square distribution for a given confidence level, then we can assume the 
two variables under consideration are independent, for practical purposes. 
This entire test can be performed in statistical tools or in Microsoft Excel.

4.4.2 � How to Implement
The naïve Bayesian model is one of the few data mining techniques that can 
be easily implemented in almost any programing language. Since the con-
ditional probability tables can be prepared in the model building phase, 
the execution of the model in runtime is very quick. Data mining tools 
have dedicated naïve Bayes classifier functions. In RapidMiner, Naïve Bayes 
is operator available under Modeling > Classification. The process of building 
a model and applying it to new data is similar to decision trees and other 
classifiers. The naïve Bayesian algorithm can accept both numeric and nom-
inal attributes.

Step 1: Data Preparation
The Golf data set shown in Table 4.8 is available in RapidMiner under Sam-
ple > Data in the repository section. The Golf data set can just be clicked and 
dropped in the process area to source all 14 records of the data set. Within the 
same repository folder, there is also a Golf-Test data set with a set of 14 records 

Table 4.10  Contingency Tables with Observed Frequency (A) and Expected Frequency (B)

Wind Wind

Outlook False True Total Outlook False True Total

overcast 2 2 4 overcast 2.29 1.71 4
rain 3 2 5 rain 2.86 2.14 5
sunny 3 2 5 sunny 2.86 2.14 5

Total 8 6 14 Total 8 6 14
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used for testing. Both data sets need to be added in Main process area. Since 
the Bayes operator accepts numeric and nominal data types, no other data 
transformation process is necessary. Sampling is a common method to extract 
the training data set from a large data set. It is especially important for naïve 
Bayesian modeling for the training data set to be representative and proportional to 
the underlining data set. Hence, random sampling is recommended instead of 
class-stratified sampling techniques.

Step 2: Modeling Operator and Parameters
The Naïve Bayes operator (Modeling > Classification) can now be connected 
to the Golf training data set. The Naïve Bayesian operator has only one param-
eter option to set: whether or not to include Laplace correction. For smaller 
data sets, Laplace correction is strongly encouraged, as a data set may not have 
all combinations of attribute values for every class value. In fact, by default, 
Laplace correction is checked. Outputs of the Naïve Bayes operator are the 
model and original training data set. The model output should be connected 
to Apply Model (Model Application folder) to execute the model on the test 
data set. The output of the Apply Model operator is the labeled test data set and 
the model.

Step 3: Evaluation
The labeled data set that we have after using the Apply Model operator is then 
connected to the Performance – Classification operator to evaluate the perfor-
mance of the classification model. The Performance – Classification operator 
can be found under Evaluation > Performance Measurement > Performance.  
Figure 4.35 shows the complete naïve Bayesian predictive classification pro-
cess. The output ports can be connected to result ports and the process can 
be saved and executed. The RapidMiner process is also available for down-
load from the companion website www.LearnPredictiveAnalytics.com.

Step 4: Execution and Interpretation
The process shown in Figure 4.35 will has three result outputs: a model descrip-
tion, performance vector, and labeled data set. The labeled data set contains 
the test data set with the predicted class as an added column. The labeled data 
set also contains the confidence for each label class, which indicates the likeli-
hood of each label class value.

The model description result contains more information on class conditional 
probabilities of all the input attributes, derived from the training data set. The 
Charts tab in model description contains probability density functions for the 
attributes, as shown in Figure 4.36. In the case of continuous attributes, we can 
discern the decision boundaries across the different class labels for the Humid-
ity attribute. We can see when Humidity exceeds 82, the likelihood of Play = 

http://www.LearnPredictiveAnalytics.com
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FIGURE 4.35
Data mining process for Naive Bayes algorithm.

FIGURE 4.36
Naive Bayes model output: Probability density function for Humidity attribute.
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no increase. The distribution table is shown in Figure 4.37 with all attribute 
values and corresponding probability measures. The Distribution Table tab in 
the model description provides the familiar class conditional probability table 
similar to Table 4.5 and Table 4.6.

The performance vector output is similar to previously discussed classification 
algorithms. The performance vector provides the confusion matrix describing 
accuracy, precision, and recall metrics for the predicted test data set.

4.4.3 � Conclusion
The Bayesian algorithm provides a probabilistic framework for a classifica-
tion problem. It has a simple and sound foundation for modeling the data 
and is quite robust to outliers and missing values. This algorithm is deployed 
widely in text mining and document classification where the application has 
a large set of attributes and attribute values to compute. In our experience, 
the naïve Bayesian classifier is often a great place to start and is very work-
able as an initial model in the proof of concept (POC) stage for an analytics 
project. It also serves as a good benchmark for comparison to other mod-
els. Implementation of the Bayesian model in production systems is quite 
straightforward and the use of data mining tools is optional. One major lim-
itation of the model is the assumption of independent attributes, which can 
be mitigated by advanced modeling or decreasing the dependence across the 
attributes through preprocessing. The uniqueness of the technique is that it 
leverages new information as it arrives and tries to make a best prediction 
considering new evidence. In this way, it is quite similar to how our mind 
works. Talking about the mind, the next algorithm mimics the biological 
process of human neurons!

FIGURE 4.37
Naive Bayes distribution table output.
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4.5 � ARTIFICIAL NEURAL NETWORKS
The objective of a predictive analytics algorithm is to model the relationship 
between input and output variables. The neural network technique approaches 
this problem by developing a mathematical explanation that closely resembles 
the biological process of a neuron. Although the developers of this technique 
have used many biological terms to explain the inner workings of neural net-
work modeling process, it has a simple mathematical foundation. Consider 
the simple linear mathematical model:

	Y = 1 + 2X1 + 3X2 + 4X3	

Where Y is the calculated output and X1,X2, and X3 are input attributes. 1 
is the intercept and 2, 3, and 4 are the scaling factors or coefficients for the 
input attributes X1,X2, and X3, respectively. We can represent this simple linear 
model in a topological form as shown in Figure 4.38.

In this topology, X1 is the input value and passes through a node, denoted by a 
circle. Then the value of X1 is multiplied by its weight, which is 2, as noted in 
the connector. Similarly, all other attributes (X2 and X3) go through a node and 
scaling transformation. The last node is a special case with no input variable; it 
just has the intercept. Finally, values from all the connectors are summarized in 
an output node that yields predicted output Y. The topology shown in Figure 
4.38 represents the simple linear model Y = 1 + 2X1 + 3X2 + 4X3. The topology 
also represents a very simple artificial neural network (ANN). The neural networks 
model more complex nonlinear relationships of data and learn though adaptive 
adjustments of weights between the nodes. The ANN is a computational and 
mathematical model inspired by the biological nervous system. Hence, some of 
the terms used in an ANN are borrowed from biological counterparts.

In neural network terminology, nodes are called units. The first layer of nodes 
closest to the input is called the input layer or input nodes. The last layer of 
nodes is called the output layer or output nodes. The output layer performs 

Inputs Input
Node
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3
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Output
Node

Output

Y

X1

X2

X3

FIGURE 4.38
Model topology.
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an aggregation function and also can have a transfer function. The transfer func-
tion scales the output into the desired range. Together with the aggregation 
and transfer function, the output layer performs an activation function. This 
simple two-layer topology, as shown in Figure 4.38, with one input and one 
output layer is called a perceptron, the most simplistic form of artificial neu-
ral network. A perceptron is a feed-forward neural network where the input 
moves in one direction and there are no loops in the topology.

The functional unit of cells in the nervous system is 
the neuron. An artificial neural network of nodes and 
connectors has a close resemblance to a biological 
network of neurons and connections, with each node 
acting as a single neuron. There are close to 100 
billion neurons in the human brain and they are all 
interconnected to form this very important organ of the 
human body (see Figure 4.39). Neuron cells are found in 
most animals; they transmit information through electrical 
and chemical signals. The interconnection between 

one neuron with another neuron happens through a 
synapse. A neuron consists of a cell body, a thin structure 
that forms from the cell body called dendrite, and a 
long linear cellular extension called an axon. Neurons 
are composed of a number of dendrites and one axon. 
The axon of one neuron is connected to the dendrite of 
another neuron through a synapse, and electrochemical 
signals are sent from one neuron to another. There 
are about 100 trillion synapses in a human brain.

BIOLOGICAL NEURONS

FIGURE 4.39
Anatomy of a neuron. (Modified from original “Neuron Hand-tuned.” Original uploader: Quasar 
Jarosz at en.wikipedia.org. Transferred from en.wikipedia.org to Commons by user Faigl.ladislav 
using CommonsHelper. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia 
Commons.4)

4http://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg#mediaviewer/
File:Neuron_Hand-tuned.svg

http://en.wikipedia.org
http://en.wikipedia.org
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A artificial neural network is typically used for modeling nonlinear, compli-
cated relationships between input and output variables. This is made possible 
by the existence of more than one layer in the topology, apart from the input 
and output layers, called hidden layers. A hidden layer contains a layer of nodes 
that connects input from previous layers and applies an activation function. 
The output is now calculated by a more complex combination of input values, 
as shown in Figure 4.40.

Consider the example of the Iris data set. It has four input variables, sepal 
length, sepal width, petal length, and petal width, with three classes (Iris setosa, 
Iris versicolor, Iris virginica) in the label. An ANN based on the Iris data set yields 
a three-layer structure (the number of layers can be specified by the user) with 
three output nodes, one for each class variable. For a categorical label problem, 
as in predicting species for Iris, the ANN provides output for each class type. 
A winner class type is picked based on the maximum value of the output class 
label. The topology in Figure 4.40 is a feed-forward artificial neural network 
with one hidden layer. Of course, depending on the problem to be solved, we 
can use a topology with multiple hidden layers and even with looping where 
the output of one layer is used as input for preceding layers. Specifying what 
topology to use is a challenge in neural network modeling and it takes time to 
build a good approximating model.

The activation function used in the output node consists of a combination 
of an aggregation function, usually summarization, and a transfer function. 
Transfer functions can be anything from sigmoid to normal bell curve, 
logistic, hyperbolic, or linear functions. The purpose of sigmoid and bell 
curves is to provide a linear transformation for a particular range of values 
and a nonlinear transformation for the rest of the values. Because of the 

Sepal length

Input Hidden 1 Output

Sepal width

Petal length

Petal width

Iris setosa

Iris virginica

Iris versicolor

FIGURE 4.40
Topology of a neural network model.
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transformation function and the presence of multiple hidden layers, we 
can model or closely approximate almost any mathematical continuous 
relationship between input variables and output variables. Hence, a mul-
tilayer artificial neural network is called a universal approximator. However, 
the presence of multiple user options such as topology, transfer function, 
and number of hidden layers makes the search for an optimal solution 
quite time consuming.

4.5.1 � How It Works
An artificial neural network learns the relationship between input attributes 
and the output class label through a technique called back propagation. For a 
given network topology and activation function, the key training task is to find 
the weights of the links. The process is rather intuitive and closely resembles 
the signal transmission in biological neurons. The model uses every training 
record to estimate the error of the predicted output as compared against the 
actual output. Then the model uses the error to adjust the weights to minimize 
the error for the next training record and this step is repeated until the error 
falls within the acceptable range (Laine, 2003). The rate of correction from one 
step to other should be managed properly, so that the model does not over-
correct. Following are the key steps in developing an artificial neural network 
from a training data set.

Character recognition is the process of interpreting 
handwritten text and converting it into digitized characters. 
It has a multitude of practical applications in our 
everyday life, including converting handwritten notes to 
standardized text, automated sorting of postal mail by 
looking at the zip codes (postal area codes), automated 
data entry from forms and applications, digitizing classic 
books, license plate recognition, etc. How does it work?

In its most basic form, character recognition has two 
steps: digitization and development of the learning 
model. In the digitization step, every individual character 
is converted to a digital matrix, say 12x12 pixels, where 
each cell takes a value of either 0 or 1 based on the 
handwritten character overlay. The input vector now has 
144 binary attributes (12x12) indicating the information of 
the handwritten characters. Let’s assume the objective 
is to decipher a numeric handwritten zip code (Matan & 

Kiang, 1990). We can develop an artificial neural network 
model which accepts 144 inputs and has 10 outputs, each 
indicating a digit from 0 to 9. The model has to be learned 
in such a way that when the input matrix is fed, one of the 
outputs shows the highest signal indicating the prediction 
for the character. Since a neural network is adaptable and 
relatively easy to deploy, it is increasingly getting used 
in character recognition, image processing, and related 
applications (Li, 1994). This specific use case is also an 
example where the explanatory aspect of the model is 
less important—maybe because no one knows exactly 
how the human brain does it. So there is less expectation 
that the model should be understandable as long as it 
works with acceptable performance. This also means ANN 
models are not easy to explain and in many situations this 
alone will remove them from consideration of the data 
mining techniques to use. We wish this wasn’t the case!

OPTICAL CHARACTER RECOGNITION
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Step 1: Determine the Topology and Activation Function
For this example, let’s assume a data set with three numeric input attributes 
(X1, X2, X3) and one numeric output (Y). To model the relationship, we are 
using a topology with two layers and a simple aggregation activation function,  
as shown in Figure 4.41. There is no transfer function used in this example.

Step 2: Initiation
Let’s assume the initial weights for the four links are 1, 2, 3, and 4. Let’s take an 
example model and a test record with all the inputs as 1 and the known output 
as 15. So, X1 = X2 = X3 = 1 and output Y = 15. Figure 4.42 shows initiation of 
first training record.

Step 3: Calculating Error
We can calculate the predicted output of the record from Figure 4.42. This is 
simple feed forward process of passing through the input attributes and cal-
culating the predicted output. The predicted output Y  according to current 
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FIGURE 4.42
Initiation and first training record.
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Two-layer topology with summary aggregation.
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model is 1 + 1 * 2 + 1 * 3 + 1 * 4 = 10. The difference between the actual output 
from training record and predicted output is the error:

	e = Y − Y	

The error for this example training record is 15 – 10 = 5.

Step 4: Weight Adjustment
Weight adjustment is the most important part of learning in an artificial neu-
ral network. The error calculated in the previous step is passed back from the 
output node to all other nodes in the reverse direction. The weights of the 
links are adjusted from their old value by a fraction of the error. The fraction λ 
applied to the error is called learning rate. λ takes values from 0 to 1. A value 
close to 1 results in a drastic change to the model for each training record and 
a value close to 0 results in smaller changes and less correction. New weight of 
the link (w) is the sum of old weight (w’) and the product of learning rate and 
proportion of the error (λ * e).

	w = w ′ + λ * e 	

The choice of λ can be tricky in the implementation of an ANN. Some model 
processes start with λ close to 1 and reduce the value of λ while training each 
cycle. By this approach any outlier records later in the training cycle will not 
degrade the relevance of the model. Figure 4.43 shows the error propagation 
in the topology.

The current weight of the first link is w2 = 2. Let’s assume the learning rate is 
0.5. The new weight will be w2 = 2 + 0.5 * 5/3 = 2.83. The error is divided by 3 
because the error is back propagated to three links from the output node. Sim-
ilarly, the weight will be adjusted for all the links. In the next cycle, a new error 
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will be computed for the next training record. This cycle goes on until all the 
training records are processed by iterative runs. The same training example can 
be repeated until the error rate is less than a threshold. We have reviewed a very 
simple case of an artificial neural network. In reality, there will be multiple hid-
den layers and multiple output links—one for each nominal class value. Because 
of the numeric calculation, an ANN model works well with numeric inputs and 
outputs. If the input contains a nominal attribute, a preprocessing step should be 
included to convert the nominal attribute into multiple numeric attributes—one 
for each attribute value, this process is similar to dummy variable introduction, 
which will be further explored in chapter 10 Time Series Forecasting. This spe-
cific preprocessing increases the number of input links for neural network in the 
case of nominal attributes and thus increases the necessary computing resources. 
Hence, an ANN is more suitable for attributes with a numeric data type.

4.5.2 � How to Implement
An artificial neural network is one of the most popular algorithms available 
for data mining tools. In RapidMiner, the ANN model operators are available 
in the Classification folder. There are three types of models available: A simple 
perceptron with one input and one output layer, a flexible ANN model called 
Neural Net with all the parameters for complete model building, and advanced 
AutoMLP algorithm. AutoMLP (for Automatic Multilayer Perceptron) combines 

FIGURE 4.44
Data mining process for neural network.
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concepts from genetic and stochastic algorithms. It leverages an ensemble 
group of ANNs with different parameters like hidden layers and learning rates. 
It also optimizes by replacing the worst performing models with better ones 
and maintains an optimal solution. For the rest of the discussion, we will focus 
on the Neural Net model.

Step 1: Data Preparation
The Iris data set is used to demonstrate the implementation of an ANN. All 
four attributes for the Iris data set are numeric and the output has three classes. 
Hence the ANN model will have four input nodes and three output nodes. 
The ANN model will not work with categorical or nominal data types. If the 
input has nominal attributes, it should be converted to numeric using data 
transformation, see Chapter 13 Getting Started with RapidMiner. Nominal to 
binominal conversion operator can be used to convert each value of a nominal 
attribute to separate binominal attributes. In this example, we use the Rename 
operator to name the four attributes of the Iris data set and the Split Data oper-
ator to split 150 Iris records equally into the training and test data.

Step 2: Modeling Operator and Parameters
The training data set is connected to the Neural Net operator (Modeling > 
Classification and Regression > Neural Net Training). The Neural Net operator 
accepts real values and later converts them into the normalized range –1 to 1 
and outputs a standard ANN model. The following parameters are available in 
ANN for users to change and customize in the model.

	 n	� Hidden layer: Determines the number of layers, size of each hidden 
layer, and names of each layer for easy identification in the output 
screen. The default size of the node is –1, which is actually calculated 
by (number of attributes + number of classes)/2 + 1. The default can be 
overwritten by specifying an integer of nodes, not including a no-input 
threshold node per layer.

	 n	� Training cycles: This number of times a training cycle is repeated; it 
defaults to 500. In a neural network, every time a training record is 
considered, the previous weights are quite different and hence it is 
necessary to repeat the cycle many times.

	 n	� Learning rate: The value of λ determines how sensitive the change in 
weight has to be in considering error for the previous cycle. It takes a 
value from 0 to 1. A value closer to 0 means the new weight would be 
more based on the previous weight and less on error correction. A value 
closer to 1 would be mainly based on error correction.

	 n	� Momentum: This value is used to prevent local maxima and seeks to 
obtain globally optimized results by adding a fraction of the previous 
weight to the current weight.
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	 n	� Decay: During the neural network training, ideally the error would be 
minimal in the later portion of the record sequence. We don’t want a 
large error due to any outlier records in the last few records, thereby 
impacting the performance of the model. Decay reduces the value of the 
learning rate and brings it closer to zero for the last training record.

	 n	� Shuffle: If the training record is sorted, we can randomize the sequence 
by shuffling it. The sequence has an impact in the model, particularly if 
the group of records exhibiting nonlinear characteristics are all clustered 
together in the last segment of the training set.

	 n	� Normalize: Nodes using a sigmoid transfer function expect input in the 
range of –1 to 1. Any real value of the input should be normalized in an 
ANN model.

	 n	� Error epsilon: The objective of the ANN model should be to minimize 
the error but not make it zero, at which the model memorizes the 
training set and degrades the performance. We can stop the model 
building process when the error is less than a threshold called the error 
epsilon.

The output of the Neural Net operator can be connected to the Apply Model 
operator, which is standard in every predictive analytics workflow. The Apply 
Model operator also gets an input data set from the Split data operator for the 
test data set. The output of the Apply Model operator is the labeled test data set 
and the ANN model.

Step 3: Evaluation
The labeled data set output after using the Apply Model operator is then con-
nected to the Performance – Classification operator (Evaluation > Performance 
Measurement > Performance), to evaluate the performance of the classifica-
tion model. Figure 4.44 shows the complete artificial neural network predictive 
classification process. The output connections can be connected to the result 
ports and the process can be saved and executed.

Step 4: Execution and Interpretation
The output results window for the model provides a visual on the topology of 
the ANN model. Figure 4.45 shows the model output topology. Upon a click 
on a node, we can get the weights of the incoming links to the node. The color 
of the link indicates relative weights. The description tab of the model window 
provides the actual values of the link weights.

The output performance vector can be examined to see the accuracy of the 
artificial neural network model built for the Iris data set. Figure 4.46 shows the 
performance vector for the model. A three-layer ANN model with the default 
parameter options and equal splitting of input data and training set yields 93% 
accuracy. Out of 75 examples, only 5 were misclassified.
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4.5.3 � Conclusion
Neural network models require strict preprocessing. If the test example has miss-
ing attribute values, the model cannot function, similar to regression or decision 
trees. The missing values can be replaced with average values or any default val-
ues to minimize the error. The relationship between input and output cannot be 
explained clearly by an artificial neutral network. Since there are hidden layers, 
it is quite complex to understand the model. In many data mining applications 
explanation of the model is as important as prediction itself. Decision trees, 
induction rules, and regression do a far better job at explaining the model.

Building a good ANN model with optimized parameters takes time. It depends 
on the number of training records and iterations. There are no consistent guide-
lines on the number of hidden layers and nodes within each hidden layer. 
Hence, we would need to try out many parameters to optimize the selection of 
parameters. However, once a model is built, it is straightforward to implement 
and an example record gets classified quite fast.

FIGURE 4.45
Neural network model output with three hidden layers and four attributes.

FIGURE 4.46
Performance vector for artificial neural network.
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An ANN does not handle categorical input data. If the data has nominal values, 
it needs to be converted to binary or real values. This means one input attribute 
explodes to multiple input attributes and exponentially increases nodes, links, 
and complexity. Also, converting nonordinal categorical data, like zip code, 
to numeric provides an opportunity for ANN to make numeric calculations, 
which doesn’t quite make sense. Having redundant correlated attributes is not 
going to be a problem in an ANN model. If the example set is large, having 
outliers will not degrade the performance of the model. However, outliers will 
impact the normalization of the signal, which most ANN models require for 
input attributes. Because model building is by incremental error correction, 
ANN can yield local optima as the final model. This risk can be mitigated by 
managing a momentum parameter to weigh the update.

Although model explanation is quite difficult with an ANN, the rapid classi-
fication of test examples makes an ANN quite useful for anomaly detection 
and classification problems. An ANN is commonly used in fraud detection, a 
scoring situation where the relationship between inputs and output is nonlin-
ear. If there is a need for something that handles a highly nonlinear landscape 
along with fast real-time performance, then the artificial neural network is a 
good option.

4.6 � SUPPORT VECTOR MACHINES
Support vector algorithms are a relatively recent concept, like so many other 
machine learning techniques. Cortes and Vapnik (Cortes, 1995) provided one 
of the first formal introductions to the concept while investigating algorithms 
for optical character recognition at the AT&T Bell Labs.

The term “support vector machine” is a confusing name for a predictive ana-
lytics algorithm. The fact is this term is very much a misnomer: there is really 
no specialized hardware. But it is a powerful algorithm that has been very suc-
cessful in applications ranging from pattern recognition to text mining. A sup-
port vector machine (SVM) emphasizes the interdisciplinary nature of today’s 
advanced analytics by drawing equally from three major areas: computer sci-
ence, statistics, and mathematical optimization theory.

We start with essential terminology and definitions that are unique to SVMs. 
We will then conceptually explain the functioning of the algorithm for a sim-
ple “linear” data set and then a slightly more complex nonlinear dataset. We 
will provide a brief mathematical explanation of the workings of the algo-
rithm before illustrating how to implement SVMs in practice with a case study. 
Finally we will highlight how SVMs perform better in some situations com-
pared to other classification techniques and close out this section with a list of 
the advantages and disadvantages of SVMs in general.



1354.6  Support Vector Machines

4.6.1 � Concept and Terminology
At a very basic level, a support vector machine is a classification method. It works 
on the principle of fitting a boundary to a region of points that are all alike (that 
is, belong to one class). Once a boundary is fitted (on the training sample), for 
any new points (test sample) that need to be classified, we must simply check 
whether they lie inside the boundary or not. The advantage of an SVM is that 
once a boundary is established, most of the training data is redundant. All it 
needs is a core set of points that can help identify and fix the boundary. These 
data points are called support vectors because they “support” the boundary. Why 
are they called vectors? Clearly because each data point (or observation) is a 
vector: that is, it is a row of data that contains values for a number of different 
attributes.

This boundary is traditionally called a hyperplane. In a simple example of two 
dimensions (two attributes), this boundary can be a straight line or a curve (as 
shown in Figure 4.47). In three dimensions it can be a plane or an irregular com-
plex surface. Higher dimensions are obviously impossible to visualize and a hyper-
plane is thus a generic name for a boundary in more than three dimensions.

As seen in Figure 4.47, a number of such hyperplanes can be found for the 
same data set. Which one is the “correct” one? Clearly a boundary that sepa-
rates the classes with minimal misclassification is the best one. In the above 
sequence of images shown in Figure 4.47, the algorithm applied to the third 
image appears to have zero misclassification and may be the best one. Addi-
tionally, a boundary line that ensures that the average geometric distance 
between the two regions (or classes) is maximized is even better. This (n-di-
mensional) distance is called a margin. An SVM algorithm therefore essentially 
runs an optimization scheme to maximize this margin. The points with the “X” 
through them are the support vectors.

Boundary or Hyperplane

FIGURE 4.47
Three different hyperplanes for the same set of training data. There are two classes in this data set, 
which are shown as filled and open circles.
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But it is not always possible to ensure that data can be cleanly separated. It 
may be rare to find that the data are linearly separable. When this happens, 
there may be many points within the margin. In this case the best hyperplane 
is the one that has a minimum number of such points within the margin. To 
ensure this, a penalty is charged for every “contaminant” inside the margin 
and the hyperplane that has a minimum aggregate penalty cost is chosen. In  
Figure 4.48, ξ represents the penalty that is applied for each error and the sum 
of all such errors is minimized to get the best separation.

What would happen if the data are not linearly separable (even without such 
contaminating errors)? For example, in Figure 4.49a, the data points belong to 
two main classes: an inner ring and an outer ring. We know that these two classes 
are not “linearly separable.” In other words we cannot draw a straight line to split 
the two classes. However, it is intuitively clear that an elliptical or circular “hyper-
plane” can easily separate the two classes. In fact, if we were to run a simple 
“linear” SVM on this data, we would get a classification accuracy of around 46%.

How can we classify such complex feature spaces? In the above example, a 
simple trick would be to transform the two variables x and y into a new feature 
space involving x (or y) and a new variable z defined as z =

√
(x2 + y2). The 

representation of z is nothing more than the equation for a circle. When the 
data is transformed in this way, the resulting feature space involving x and z 
will appear as shown in Figure 4.49b. The two clusters of data correspond to 
the two radii of the rings: the inner one with an average radius of around 5.5 
and the outer cluster with an average radius of around 8.0. This problem is 
explored in greater detail in a case study later on in this chapter.

margin

ξ

boundary

FIGURE 4.48
Key concepts in SVM construction: boundary, margin, and penalty, ξ.
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Clearly this new problem in the x and z dimensions is now linearly separable 
and we can apply a standard SVM to do the classification. When we run a linear 
SVM on this transformed data, we get a classification accuracy of 100%. After 
classifying the transformed feature space, we can invert the transformation to 
get back our original feature space.
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FIGURE 4.49a
Linearly nonseparable classes.
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Transformation to linearly separable.
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Kernel functions offer the user the option of transforming nonlinear spaces into 
linear ones. Most packages that include SVM will have several nonlinear ker-
nels ranging from a simple polynomial basis functions to sigmoid functions. 
The user does not have to do the transformation beforehand, but simply has 
to select the appropriate kernel function; the software will take care of trans-
forming the data, classifying it, and retransforming the results back into the 
original space.

Unfortunately with a large number of attributes in a data set it is difficult to 
know which kernel would work best. The most commonly used ones are poly-
nomial and radial basis functions. From a practical standpoint, it is a good 
idea to start with a quadratic polynomial and work your way up into some 
of the more exotic kernel functions until we reach a desired accuracy level. 
This flexibility of support vector machines does come at the price of cost of 
computation.

Now that we have an intuitive understanding of how SVMs work, we can 
examine the working of the algorithm with a more formal mathematical 
explanation.

4.6.2 � How it Works
Given a training data set, how do we go about determining the boundary and 
the hyperplane? Let us use the case of a simple linearly separable dataset con-
sisting of two attributes, x1 and x2. We know that ultimately by using proper 
kernels any complex feature space can be mapped into a linear space, so this 
formulation will apply to any general data set. Furthermore, extending the 
algorithm to more than two attributes is conceptually straightforward.

There are three essential tasks involved here: the first step is to find the bound-
ary of each class. Then the best hyperplane, H, is the one that maximizes the 
margin or the distance to each of the class boundaries (see Figure 4.48). Both 
of these steps use the training data. The final step is to determine on which side 
of this hyperplane a given test example lies in order to classify it.

Step 1: Finding the boundary. When we connect every point in one class of a 
data set to every other in that class, the outline that emerges defines the bound-
ary of this class. This boundary is also known as the convex hull, as shown in 
Figure 4.50.

Each class will have its own convex hull and because the classes are (assumed 
to be) linearly separable, these hulls do not intersect each other.

Step 2: There are infinitely many available hyperplanes, two of which are 
shown in Figure 4.51. How do we know which hyperplane maximizes the mar-
gin? Intuitively we know that H0 has a larger margin than H1, but how can this 
be determined mathematically?
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First of all, any hyperplane can be expressed in terms of the two attributes, x1 
and x2, as follows:

	H = b + w · x = 0	 (4.19)

where x is (x1, x2), the weight w is (w1, w2), and b0 is an intercept-like term 
usually called the “bias.” Note that this is similar to the standard form of 

H0 H1

FIGURE 4.51
Both hyperplanes shown can separate data. It is intuitively clear that H0 is better.

FIGURE 4.50
A convex hull for one class of data.
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the equation of a line. An optimal hyperplane, H0, is uniquely defined by  
(b0 + w0 • x = 0). Once we define the hyperplane in this fashion, it can be 
shown that the margin is given by (Cortes, 1995)

	Margin = 2/(
√

w0 · w0)	 (4.20)

Maximizing this quantity requires quadratic programming, which is a 
well-established process in mathematical optimization theory (Fletcher, 1987). 
Furthermore, the w0 can be conveniently expressed in terms of only a few of 
the training examples, known as support vectors, as follows:

	 � (4.21)

where the yi are the class labels (+1 or –1 for a binary classification), and the xi 
are called the support vectors. The i’s are coefficients that are nonzero only for 
these support vectors.

Step 3: Once we have defined the boundary and the hyperplane, any new test 
example can be classified by computing on which side of the hyperplane the 
example lies. This is easily found by substituting the test example, x, into the 
equation for the hyperplane. If it computes to +1, then it belongs to the posi-
tive class and if it computes to –1 it belongs to the negative class. The interested 
reader is referred to Smola (2004) or Cortes (1995) for a full mathematical 
description of the formulation. Hsu (2003) provides a more practical demon-
stration of programming an SVM.

4.6.3 � How to Implement
We will now show how RapidMiner determines the classes for two simple cases. 
(Note: We have deliberately chosen a pair of simplistic datasets to illustrate how SVMs 
can be implemented. A more sophisticated case study will be used to demonstrate how 
to use SVMs for text mining in Chapter 9.)

Example 1: Applying an SVM to a Simple Linearly Separable  
Example
The default SVM implementation in RapidMiner is based on the so-called “dot 
product” formulation shown in equations above. In this first example we will 
build an SVM using a two-dimensional data set that consists of two classes: 
A and B (Figure 4.52). A RapidMiner process reads in the training data set, 
applies the default SVM model, and then classifies new points based on the 
model trained.

The dataset consists of 17 rows of data for three attributes: x1, x2 and class. 
The attributes x1 and x2 are numeric and class is a binomial variable consisting 
of the two classes A and B. Table 4.11 shows the full data set and Figure 4.52 
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8 Class A Class B Test Point 1 Test Point 2 Test Point 3
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FIGURE 4.52
Two-class training data: class A (diamond) and class B (square). Points 1 to 3 are used to test the 
capability of the SVM.

Table 4.11  A Simple Data Set to demonstrate SVM

x1 x2 class

1.5 2.5 A
2 2 A
1 2 A
0.75 3 A
2 1 A
1.75 1.75 A
2.75 0.75 A
2.5 1.5 A
0.5 6 B
1.5 6 B
2 5.5 B
1 5.5 B
1 6.5 B
2 4.5 B
1.75 5.25 B
2.75 4.25 B
2.5 5 B
1.5 1 Test Point 1
1.5 4 Test Point 2
2 7 Test Point 3



142 CHAPTER 4:  Classification

shows the plot of the dataset. We will be using the model to classify the three 
test examples: (1.5, 1),(1.5, 4), and (2, 7).

Step 1: Data preparation

	 n	� Read simpleSVMdemo.csv into RapidMiner by either using the Read csv 
operator or import the data into your repository using Import csv file. 
The data set can be downloaded from the companion website www.
LearnPredictiveAnalytics.com.

	 n	� Add a Set Role operator to indicate that class is a label attribute and 
connect it to the data retriever. See Figure 4.53a.

Step 2: Modeling operator and parameters

	 n	� In the Operators tab, type in SVM, drag and drop the operator into the 
main window, and connect it to Set Role. Leave the parameters of this 
operator in their default settings.

	 n	� Connect the “mod” output port of SVM to an Apply Model operator
	 n	� Insert a Generate Data by User Specification operator and click on the 

Edit List button of the attribute values parameter. When the dialog box 
opens up, click on Add Entry twice to create two test attribute names: x1 
and x2. Set x1 = 2 and x2 = 7 under “attribute value.” Note that you will 
need to change the attribute values for each new test point you want to 
classify.

	 n	� When this simple process is run, RapidMiner builds an SVM on the 
training data and applies the model to classify the test example, 
which was manually input using the Generate Data by User 
Specification operator.

FIGURE 4.53a
A simple SVM setup for training and testing.
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�Step 3: Process execution and interpretation
�For more practical applications, we may not be very interested in the Kernel 
Model output; we show it here (Figure 4.53b) to observe what the hyperplane 
for this simplistic example looks like. Note that this is essentially the same 
form as Equation 4.19 with bias b0 = 0.051, w1 = 0.370, and w2 = 1.351.
	 n	� The more interesting result in this case is the output from the “lab” port 

of the Apply Model, which is the result of applying the SVM model on 
the test point (2, 7).

	 n	� As you can see in Figure 4.54, the model has correctly classified 
this test point as belonging to class B (see the “prediction(class)” 
column). Furthermore, we are told that the confidence that this 
point belongs in class B is 92.6%. Looking at the chart, we see 
indeed that there is very little ambiguity about the classification of 
test point (2, 7).

	 n	� If you change the test example input to the point (1.5, 1), we see that 
this point would be classified under class A, with 88% confidence.

	 n	� However the same cannot be said of test point (1.5, 4); you can run the 
process and test for yourself!

In actual practice the labeled test data with prediction confidences are the most 
useful results from an SVM application.

FIGURE 4.53b
The accompanying SVM model.

FIGURE 4.54
Applying the simple SVM to classify test point 1 from Figure 4.52.
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Example 2: Applying SVM for a Linearly Nonseparable  
Example (Two Rings)
The first example showed a linearly separable training data set. Suppose we 
want to now apply the same SVM (dot) kernel to the two ring problem we saw 
earlier in this chapter: what would the results look like? We know from looking 
at the data set that this is a nonlinear problem and the dot kernel should not 
work very well. We will confirm this intuitive understanding and demonstrate 
how it can be easily fixed in the steps described below.

Step 1: Data preparation

	 n	� Start a new process and read in the data set nonlinearSVMdemodata.
csv using the same procedure as before. This dataset consists of 200 
examples in four attributes: x1, x2, y, and ring. The ring is a binomial 
attribute with two values: inner and outer.

	 n	� Connect a Set Role operator to the data and select the “ring” variable to 
be the label.

	 n	� Connect a Select Attributes operator to this and select a subset of the 
attributes: x1, x2 and ring. Make sure that the Include Special Attributes 
checkbox is on.

	 n	� Connect a Split Validation operator. Set the “split” to relative, “split 
ratio” to 0.7, and “sampling type” to stratified.

�Step 2: Modeling operator and parameters

	 n	� Double-click the Split Validation box and when you enter the nested 
layer, add an SVM operator in the training panel and Apply Model and 
Performance (Classification) operators in the testing panel.

	 n	� Once again, do not change the parameters for the SVM operator from 
its default values.

	 n	� Go back to the main level and add another Apply Model operator. 
Connect the “mod” output from the Validation box to the “mod”  
input port of Apply Model (2) and the “exa” output from the Validation 
box to the “unl” input port of Apply Model (2). Also connect the  
“ave” output from the Validation box to the “res” port of the Main 
Process. Finally, connect the “lab” output from Apply Model (2) to  
the “res” port of the Main Process. Your final process should look like 
Figure 4.55.

�Step 3: Execution and interpretation

	 n	� When you run this model, RapidMiner will generate two result tabs: 
ExampleSet (Select Attributes) and PerformanceVector (Performance). Let’s 
check the performance of the SVM classifier. Recall that 30% of the initial 
input examples are now going to be tested for classification accuracy 
(which is a total of 60 test samples).
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	 n	� As you can see in Figure 4.56, the linear SVM can barely get 50% of the 
classes correct, which is to be expected considering we have linearly 
nonseparable data and we are using a linear (dot) kernel SVM.

	 n	� A better way to visualize this result is by means of the Scatter 3D  
Color plot. Click on the ExampleSet (Select Attributes) results tab and 
select Plot View and set up the Scatter 3D Color plot as shown in 
Figure 4.57.

The red-colored examples in the upper (outer) ring are correctly classified 
as belonging to the class “outer” while the cyan-colored examples have 
been incorrectly classified as belonging to class “inner.” Similarly, the blue- 
colored examples in the lower (inner) ring have been correctly classified 
as belonging to class “inner” whereas the yellow-colored ones are not. As 
you can see, the classifier roughly gets about half the total number of test 
examples right.

To fix this situation, all we need to do is to go back to the SVM operator in the 
process and change the kernel type to polynomial (default degree 2.0) and rerun 

FIGURE 4.55
Setup for the nonlinear SVM demo model.

Table View

pred. inner
pred. outer
class recall

12
true inner

18
40.00%

17
true outer

13
43.33%

41.38%
class precision

41.94%

Plot View

accuracy: 41.67%

FIGURE 4.56
Prediction accuracy of a linear (dot) kernel SVM on nonlinear data.



FIGURE 4.57
Visualizing the prediction from linear SVM.
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the analysis. This time we will be able to classify the points with 100% accuracy 
as seen in Figure 4.58. You will get the same result if you try a radial kernel as 
well.

The point of this exercise was to demonstrate the flexibility of SVMs and the 
ease of performing such trials using RapidMiner. Unfortunately with more real-
istic data sets, there is no way of knowing beforehand which kernel type would 
work best. The solution is to nest the SVM within an Optimization operator 
and explore a host of different kernel types and kernel parameters until we 
find one that performs reasonably well. (Optimization using RapidMiner is 
described in Chapter 13 Getting Started with RapidMiner.)

RapidMiner Parameter Settings
There are many different parameters that can be adjusted depending upon 
the type of kernel function that is chosen. There is, however, one param-
eter that is very critical in optimizing SVM performance: this is the SVM 
complexity constant, C, which sets the penalties for misclassification, as was 
described in an earlier section. Most real world data sets are not cleanly 
separable and therefore will require the use of this factor. For initial trials, 
however, it is best to go with the default settings. The help in RapidMiner 
provides more details on how C impacts the performance and we will not 
repeat that here.

4.6.4 � Conclusion
A disadvantage with higher order SVMs is the computational cost. In gen-
eral since SVMs have to compute the dot product for every classification  
(and during training), very high dimensions or a large number of attributes 
can result in very slow computation times. However this disadvantage is off-
set by the fact that once an SVM model is built, small changes to the training 
data will not result in significant changes to the model coefficients as long 
as the support vectors do not change. This overfitting resistance is one of the 
reasons why SVMs have emerged as the most versatile of machine learning 
algorithms.

FIGURE 4.58
Classifying the two-ring nonlinear problem using a polynomial SVM kernel.
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In summary, the key advantages of SVM are

	 n	� Flexibility in application: SVMs have been applied for activities from 
image processing to fraud detection to text mining.

	 n	� Robustness: Small changes in data does not require expensive 
remodeling.

	 n	� Overfitting resistance: The boundary of classes within data sets can be 
adequately described usually by only a few support vectors.

These advantages have to be balanced with the somewhat high computational 
costs of SVMs.

4.7 � ENSEMBLE LEARNERS
In supervised data mining, the objective is to build a model that can explain 
the relationship between inputs and output. The model can be considered a 
hypothesis that can map new input data to predicted output. For a given train-
ing set, multiple hypotheses can explain the relationship with varying degrees 
of accuracy. While it is difficult to find the exact hypothesis from an infinite 
hypothesis space, we would like the modeling process to find the hypothesis 
that can best explain the relationship with least error.

Ensemble methods or learners optimize the hypothesis-finding problem by 
employing an array of individual prediction models and then combining 
them to form an aggregate hypothesis or model. These methods provide a 
technique for generating a better hypothesis by combining multiple hypoth-
eses into one. Since a single hypothesis can be locally optimal or overfit a 
particular training set, combining multiple models can improve the accuracy 
by forcing a meta-hypothesis solution. It can be shown that in certain condi-
tions this combined predictive power is better than the predictive power of 
individual models. Since different methods often capture different features 
of the solution space as part of any one model, the ensembles of models have 
emerged as the most important technique for many practical classification 
problems.

4.7.1 � Wisdom of the Crowd
Ensemble models have a set of base models that accept the same inputs 
and predict the outcome individually. Then the outputs from all of these 
base models are combined, usually by voting, to form an ensemble output. 
This approach is similar to decision making by a committee or a board. 
The method of improving accuracy by drawing together the prediction of 
multiple models is also called meta learning. We see this similar decision- 
making methodology in higher courts of justice, corporate boards, and 



1494.7  Ensemble Learners

various committees in legislative bodies. While individual members have 
biases and options, the thinking here is collective decision making is better 
than one individual’s assessment. Ensemble methods are used to improve 
the error rate and overcome the modeling bias of individual models. They 
can produce one strong learner by combining many weak learners. Figure 
4.59 provides the framework of ensemble models.

The final step of aggregating the prediction is usually done by voting. The pre-
dicted class with more votes from the base learners is the output of the com-
bined ensemble model. Base models predict the outcome with varied degrees 
of accuracy. Hence, we can also weight the vote by the accuracy rate of indi-
vidual models, which causes base models with higher accuracy to have higher 
representation in the final aggregation than models with lower accuracy rate 
(Dietterich, 2007).

Input
Dataset

Base
Model 1

Output 1 Output 2

f(x) Voting

Ensemble Output

Output 3 Output n

Base
Model 2

Base
Model 3

Base
Model n

...

...

FIGURE 4.59
Ensemble model.
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4.7.2 � How it Works
Let’s take an example of a hypothetical corporate boardroom with three board 
members. Assume that individually each board member makes wrong deci-
sions about 20% of time. The board needs to make a yes/no decision for a 
major project proposal. If all board members make consistent unanimous 
decision every time, then the error rate of the board as a whole is 20%. But, if 
each board member’s decisions are independent and if their outcomes are not 
correlated, the board makes an error only when more than two board members 
make an error at the same time. The board makes an error only when the major-
ity of its members make an error. We can calculate the error rate of the board 
using the binomial distribution.

In binomial distribution, the probability of k successes in n independent trials 
each with a success rate of p is given by a probability mass function:

	
P (k) =

(
n

k

)
pk(1 − p)n − k

	 (4.22)

P(Board wrong) = P(k ≥ 2) = P(2 members wrong) + P(3 members 
wrong)

Drought is a period of time where a region experiences 
far less than average water supply. With the onset 
of climate change, there has been an increase in 
frequency and duration of drought conditions in many 
parts of the world. Immediate drought is caused by the 
development of high-pressure regions, which inhibits the 
formation of clouds, which results in low precipitation 
and lower humidity. Predicting drought conditions in 
a region is a very challenging task. There is no clear 
start and end point for draught duration. There are too 
many variables that impact the climate patterns that 
lead to drought conditions. Hence, there is no strong 
model to predict drought well ahead of time (Predicting 
Drought, 2013). Predicting drought seasons in advance 
would provide time for regional administrations 
to mitigate the consequences of the drought.

Droughts involve a myriad factors including groundwater 
level, air stream flow, soil moisture, topology, and 

large-scale global weather patterns like El Nino and 
La Nina (Patel, 2012). With thousands of attributes and 
many unknown variables that influence the conditions 
for drought, there is no “silver bullet” massive model for 
predicting when drought is going to hit a region with a 
high degree of accuracy. What we have is many different 
“weak” models that use some of the thousands of 
attributes available, which make predictions marginally 
better than pure chance. These weak models may 
provide different drought predictions for the same region 
and time, based on the diverse input variables for each 
model. We can summarize the prediction by combining 
the predictions of individual models and take a vote. 
Ensemble models provide a systemic method to combine 
many weak models into one better model. Most of the 
data mining models deployed in production applications 
are ensemble models. Ensemble models greatly reduce 
generalization errors and improve the accuracy of the 
overall prediction, if certain conditions are met.

PREDICTING DROUGHT
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P(Board wrong) = 
(

n

3

)
pk(1 − p)n − k +

(
n

2

)
pk(1 − p)n − k

= 
(

3

3

)
0.23(1 − 0.2)0 +

(
3

2

)
0.22(1 − 0.2)1

= 0.008 + 0.096
= 0.104
= 10.4%

In this example, the error rate of the board (10.4%) is less than the error rate 
of the individuals (20%)! We therefore see the impact of collective decision 
making. A generic formula for calculating error rate for the ensemble is 
given by

	
P (ensemble wrong) = P (k ≥ round (n/2)) =

n∑
k = 0

(
n

k

)
pk(1 − p)n − k

	

However, some important criteria to note are:

	 n	� Each member of the ensemble should be independent.
	 n	� The individual model error rate should be less than 50% for binary 

classifiers.

If the error rate of the base classifier is more than 50%, its prediction power 
is worse than pure chance and hence, it is not a good model to begin with. 
Achieving the first criterion of independence amongst the base classifier is 
difficult. However there are a few techniques available to make base models 
as diverse as possible. In the board analogy, having a board with diverse and 
independent members makes statistical sense. Of course, they all have to make 
right decisions more than half the time.

Achieving the Conditions for Ensemble Modeling
We will be able to take advantage of combined decision-making power only 
if the base models are good to begin with. While meta learners can form 
a strong learner from several weak learners, those weak learners should be 
better than random guessing. Because all the models are developed based on 
the same training set, the diversity and independence condition of the model 
is difficult to accomplish. While complete independence of the base models 
cannot be achieved, we can take steps to promote independence by changing 
the training sets for each base model, varying the input attributes, building 
different classes of modeling techniques and algorithms, and changing the 
modeling parameters to build the base models. To achieve the diversity in the 
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base models, we can alter the conditions in which the base model is built. 
The most commonly used conditions are:

	 n	� Different model algorithms: The same training set can be used to build 
different classifiers, such as decision trees using multiple algorithms, 
naïve Bayesian, k-nearest neighbors, artificial neural networks, etc. The 
inherent characteristics of these models will be different, which yields 
different error rates and a diverse base model set.

	 n	� Parameters within the models: Changing the parameters like depth 
of the tree, gain ratio, and maximum split for decision tree model can 
produce multiple decision trees. The same training set can be used to 
build all the base models.

	 n	� Changing the training record set: Since the training data is the 
key contributor to the error in a model, changing the training set to 
build the base model is one effective method for building multiple 
independent base models. A training set can be divided into multiple 
sets and each set can be used to build one base model. However, this 
technique requires a sufficiently large training set and is seldom used. 
Instead, we can sample training data with replacement from a data set 
and repeat the same process for other base models.

	 n	� Changing the attribute set: Similar to changing the training data where 
a sample of records are used for the building of each base model, we 
can sample the attributes for each base model. This technique works if 
the training data have a large number of attributes.

In the next few sections, we will be reviewing specific approaches to building 
ensemble models based on the above techniques on promoting independence 
among base models. There are some limitations in using ensemble models. If 
different algorithms are used for the base models, they impose different restric-
tions on the type of input data that can be used. Hence it could create a super-
set of restrictions to inputs for an ensemble model.

4.7.3 � How to Implement
In data mining tools, ensemble modeling operators can be found in meta 
learning or ensemble learning groupings. In RapidMiner, since ensemble mod-
eling is used in the context of predicting, all the operators are located in Mod-
eling > Classification and Regression > Meta Modeling. The process of building 
ensemble models is very similar to that of building any classification models 
like decision tress or neural networks. Please refer to previous classification 
algorithms for steps to develop individual classification processes and models 
in RapidMiner. There are a few options to choose for implementing meta mod-
eling in RapidMiner. In the next few pages we will review the implementation 
of ensemble modeling with simple voting and a couple of other techniques to 
make the base models independent by altering examples for the training set.
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Ensemble by Voting
Implementing an ensemble classifier starts with building a simple base classifi-
cation process. For this example, we can build a decision tree process with the 
Iris data set as shown in Section 4.1 Decision Trees. The standard decision tree 
process involves data retrieval and a decision tree model, followed by applying 
the model to an unseen test data set sourced from the Iris data set and using a 
performance evaluation operator. To make it an ensemble model, the Decision 
Tree operator has to be replaced with the Vote operator from the meta learning 
folder. All other operators will remain the same. The ensemble process will 
look similar to the process shown in Figure 4.60.

The Vote operator is an ensemble learner that houses multiple base models 
inside the inner subprocess (Mierswa et al., 2006). The model output from the 
vote process behaves like any other classification model and it can be applied 
in any scenario where a decision tree can be used. In the apply model phase, 
the predicted classes are tallied up amongst all the base classifiers and the class 
with highest number of votes is the predicted class for the ensemble model.

On double-clicking the nested Vote meta modeling operator, we can add multiple 
base classification models inside the Vote operator. All these models accept the 
same training set and provide an individual base model as output. In this exam-
ple we have added three models: decision tree, k-NN and naïve Bayes. Figure 4.61 
shows the inner subprocess of the Vote meta modeling operator. The act of tallying 

FIGURE 4.60
Data mining process using ensemble model.
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all the predictions of these base learners and providing the majority prediction is 
the job of the meta model—the Vote modeling operator. This is the aggregation 
step in ensemble modeling and in RapidMiner it is called a stacking model. A 
stacking model is built into the Vote operator and is not visible on the screen.

The ensemble process with the Vote meta model can be saved and executed. 
Once the process is executed, the output panel of the performance vector is 
no different than a normal performance vector. Since this process has a meta 
model, the model panel in the results window exhibits new information, as 
shown in Figure 4.62. The model window shows all the individual base mod-
els and one stacking model, which is the combination of all the base mod-
els. The Vote meta model is simple to use wherever an individual base model 
could have been used independently. The limitation of the model is that all the 
base learners use the same training data set and different base models impose 
restrictions on what data types they can accept.

Bootstrap Aggregating or Bagging
Bagging is a technique where base models are developed by changing the train-
ing set for every base model. In a given training set T of n records, m training 
sets are developed each with n records, by sampling with replacement. Each 
training set T1, T2, T3, …, Tm will have the same record count of n as the original 
training set T. Because they are sampled with replacement, they can contain 
duplicate records. This is called bootstrapping. Each sampled training set is then 
used for a base model preparation. Through bootstrapping, we have a set of m 
base models and the prediction of each model is aggregated for an ensemble 
model. This combination of bootstrapping and aggregating is called bagging.

FIGURE 4.61
Subprocess inside the Vote operator.
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On average, each base training set Ti contains about 63% unique training 
records as compared to the original training set T. Sampling with replacement 
of n records contains 1 – (1 – 1/n)n unique records. When n is sufficiently large 
we get 1 – 1/e = 63.2% unique records on average. The rest of the data contains 
duplicates from already sampled data. The process of bagging improves the sta-
bility of unstable models. Unstable models like decision trees and neural net-
work are highly dependent even on slight changes in the training data. Because 
a bagging ensemble combines multiple hypotheses of the same data, the new 
aggregate hypothesis helps neutralize these training data variations.

Implementation
The Bagging operator is available in the meta learning folder: Modeling > Clas-
sification and Regression > Meta modeling > Bagging. Like the Vote meta oper-
ator, Bagging is a nested operator with an inner subprocess. Unlike the vote 
process, bagging has only one model in the inner subprocess. Multiple base 
models are generated by changing the training data set. The Bagging operator 
has two parameters.

	 n	� Sample ratio: Indicates the fraction of records used for training.
	 n	� Iterations (m): Number of base modes that need to be generated.

Figure 4.63 shows the RapidMiner process for the Bagging operator. Figure 4.64 
shows the inner subprocess for the Bagging operator with one model specifica-
tion. Internally multiple base models are generated based on iterations (m) con-
figured in the Bagging parameter. In this example, we are using a decision tree 
model for the inner subprocess.

FIGURE 4.62
Output of ensemble model based on voting.
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The RapidMiner process for bagging can be saved and executed. Similar to the 
Vote meta model, the Bagging meta model acts as one model with multiple 
base models inside. The results window shows the practiced example set, per-
formance vector, and bagging model description. In the results window, we 
can examine all m (in this case 10) models that are developed based on m iter-
ations of the training set. The base model results are aggregated using simple 
voting. Bagging is particularly useful when there is anomaly in the training 
data set that impacts the individual model significantly. Bagging provides a 
useful framework where the same data mining algorithm is used for all base 

FIGURE 4.64
Bagging subprocess.

FIGURE 4.63
Ensemble process using bagging.
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learners. However, each base model differs because the training data used by 
the base learners are different. Since each base model explores a different solu-
tion space, the performance of the ensemble model would be better than that 
of base models. Figure 4.65 shows the model output of Bagging meta model 
with constituent decision trees.

Boosting
Boosting offers another approach to building an ensemble model by 
manipulating training data similar to bagging. As with bagging, it provides 
a solution to combine many weak learners into one strong learner, by min-
imizing bias or variance due to training records. Unlike bagging, boosting 
trains the base models in sequence one by one and assigns weights for all 
training records. The boosting process concentrates on the training records 
that are hard to classify and overrepresents them in the training set for the 
next iteration.

The boosting model is built by an iterative and sequential process where a 
base model is built and tested with all of the training data, and based on the 
outcome, the next base model is developed. To start with, all training records 
have equal weight. The weight of the record is used for the sampling distri-
bution for selection with replacement. A training sample is selected based on 
the weights and used for model building. Then the model is used for testing 
with the whole training set. Incorrectly classified records are assigned a higher 
weight and correctly classified records are assigned a low weight, so hard-to-
classify records have a higher propensity of selection for the next round. The 
training sample for the next round will be most likely filled with incorrectly 
classified records from the previous round. Hence the next model will focus on 
the hard-to-classify data space.

FIGURE 4.65
Output of bagging models.
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Boosting assigns the weight for each training record and has to adaptively 
change the weight based on difficulty of classification. This results in an ensem-
ble of base learners specialized in classifying both easy-to-classify and hard-
to-classify records. When applying the model, all base learners are combined 
through a simple voting aggregation.

AdaBoost
AdaBoost is one of the most popular implementations of the boosting 
ensemble approach. It is adaptive because it assigns weights for base mod-
els (α) based on the accuracy of the model, and changes weights of the 
training records (w) based on the accuracy of the prediction. Here is the 
framework of the AdaBoost ensemble model with m base classifiers and 
n training records ((x1,y1), (x2,y2), …, (xn,yn)). Following are the steps 
involved in AdaBoost:

	 1.	� Each training record is assigned an uniform weight wi = 1/n.
	 2.	� Training records are sampled and the first base classifier bk(x) is built.
	 3.	� The error rate for the base classifier can be calculated by Equation 4.23:

	
ek =

∑n

k = 1
wi * I (bk (xi) ≠ yi)	 (4.23)

where I(x) = 1 when the prediction is right and 0 when the prediction is 
incorrect.
	 4.	� The weight of the classifier can be calculated as αk = ln (1– ek)/ek. If the 

model has a low error rate, then the weight of the classifier is high and 
vice versa.

	 5.	� Next, the weights of all training records are updated by

	wk+1 (i + 1) = wk(i) * e(αkF(bk(xi) ≠ yi))
	

where F(x) = –1 if the prediction is right and F(x) = 1 if the prediction is wrong.

Hence, the AdaBoost model updates the weights based on the prediction and 
the error rate of the base classifier. If the error rate is more than 50%, the record 
weight is not updated and reverted back to the next round.

AdaBoost Model in RapidMiner
The AdaBoost operator is available in the meta learning folder: Modeling > 
Classification and Regression > Meta modeling > AdaBoost. The operator 
functions similar to Bagging and has an inner subprocess. The number of 
iterations or base models is a configurable parameter for the AdaBoost opera-
tor. Figure 4.66 shows the AdaBoost data mining process. This example uses 
the Iris data set with the Split Data operator for generating training and test 
data sets. The output of the AdaBoost model is applied to the test set and the 
performance is evaluated by the Performance operator.
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The number of iterations used in the AdaBoost is three, which is specified in 
the parameter. In the inner process, the model type can be specified. In this 
example the decision tree model is used. The completed RapidMiner process 
is saved and executed. The result window has the output ensemble model, 
base models, and the predicted records. The model window shows the deci-
sion trees for the base classifiers. Figure 4.67 shows the result output for the 
AdaBoost model.

FIGURE 4.66
Data mining process using AdaBoost.

FIGURE 4.67
Output of AdaBoost model.
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Random Forest
Recall that in the bagging technique, for every iteration, a sample of training 
records is considered for building the model. The random forest technique 
uses a similar concept to the one used in bagging. When deciding on splitting 
each node in a decision tree, the random forest only considers a random subset 
of all the attributes in the training set. To reduce the generalization error, the 
algorithm is randomized in two levels, training record selection and attribute 
selection, in the inner working of each base classifier. The random forests con-
cept was first put forward by Leo Breiman and Adele Cutler (Breiman, 2001).

In general, the model works using the following steps. If there are n training 
records with m attributes, and let k be the number of trees in the forest; then 
for each tree:

	 1.	� An n random sample is selected with replacement. This step is similar to 
bagging.

	 2.	� A number D is selected, where D << m. D determines the number of 
attributes to be considered for node splitting.

	 3.	� A decision tree is started. For each node, instead of considering all 
m attributes for the best split, a random number D attributes are 
considered. This step is repeated for every node.

	 4.	� As in any ensemble, the greater the diversity of the base trees, the lower 
the error of the ensemble.

Once all the trees in the forest are built, for every new record, all the trees pre-
dict a class and vote for the class with equal weights. The most predicted class 
by the base trees is the prediction of the forest (Gashler et al., 2008).

Implementation
The Random Forest operator is available in Modeling > Classification and 
Regression > Tree Induction > Random Forest. It works similarly to the other 
ensemble models where the user needs to specify the number of base trees 
to be built. Since the inner base model is always a decision tree, there is no 
explicit inner subprocess specification. Bagging or boosting ensemble models 
require explicit inner subprocess specification. All the tree-specific parameters 
like leaf size, depth, and split criterion can be specified in the Random Forest 
operator. The key parameter that specifies the number of base trees is Num-
ber of Trees. Figure 4.68 shows the RapidMiner process with the Iris data set, 
the Random Forest modeling operator, and the Apply Model operator. For this 
example, the number of base trees is specified as 10. The process looks and 
functions similarly to a simple decision tree classifier.

Once the process is executed, the results window shows the model, predicted 
output, and performance vector. Similar to other meta model output, the 
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Random Forest model shows the trees for all base classifiers. Figure 4.69 shows 
the model output for the Random Forest operator. Notice that the nodes are dif-
ferent in each tree. Since the attribute selection for each node is randomized, 
each base tree is different. Thus the Random Forest models strive to reduce the 
generalization error of the decision tree model. The Random Forest models are 
very useful as baseline ensemble models for comparative purposes.

FIGURE 4.68
Data mining process using the Random Forest operator.

FIGURE 4.69
Output of Random Forest models.
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4.7.4 � Conclusion
Most of the data mining models developed for production applications are 
built on ensemble models. They are used in wide range of applications, includ-
ing political forecasting (Montgomery et al., 2012), weather pattern modeling, 
media recommendation, web page ranking (Baradaran Hashemi et al., 2010), 
etc. Since many algorithms approach the problem of modeling the relation-
ship between input and output differently, it makes sense to aggregate the 
prediction of a diverse set of approaches. Ensemble modeling reduces the gen-
eralization error that arises due to overfitting the training data set. The four 
ensemble techniques discussed provide fundamental methods of developing a 
cohort of base models by choosing different algorithms, changing parameters, 
changing training records, sampling, and changing attributes. All these tech-
niques can be combined in one ensemble model. There is no one approach for 
ensemble modeling; all the techniques discussed in this chapter were proven 
to perform better than base models as long as they are diverse (Polikar, 2006). 
The wisdom of crowds makes sense in data mining as long as “group thinking” 
is controlled by promoting independence amongst base models.
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CHAPTER 5

In this chapter, we will explore one of the most commonly used predictive ana-
lytics techniques—fitting data with functions or function fitting. The basic idea 
behind function fitting is to predict the value (or class) of a dependent variable 
y, by combining the predictor variables X into a function, y = f(X). Function fit-
ting involves many different techniques and the most common ones are linear 
regression for numeric prediction and logistic regression for classification. These 
two form the majority of material in this chapter. According to an annual sur-
vey1 on data mining, regression models continue to be one of the three most 
common analytics tools used today by practitioners (the others being decision 
trees and clustering).

Regression is a relatively “old” technique dating back to the Victorian era 
(1830s to early 1900s). Much of the pioneering work was done by Sir Fran-
cis Galton, a distant relative of Charles Darwin, who came up with the con-
cept of “regressing toward the mean” while systematically comparing children’s 
heights against their parents’ heights. He observed there was a strong tendency 
for tall parents to have children slightly shorter than themselves, and for short 
parents to have children slightly taller than themselves. Even if the parents’ 
heights were at the tail ends of a bell curve or normal distribution, their chil-
dren’s heights tended toward the mean of the distribution. Thus in the end, all 
the samples “regressed” toward a population mean. Therefore, this trend was 
called “regression” by Galton (Galton, 1888) and thus laid the foundations for 
linear regression

In the first section of this chapter we will provide the theoretical framework 
for the simplest of function-fitting methods: the linear regression model. Con-
sidering its widespread use and familiarity, we will not spend too much time 
discussing the theory behind it. Instead we will focus more on a case study 
and demonstrate how to build regression models. Due to the nature of the 
function fitting approach, a limitation that modelers have to deal with is the 

12012 Rexer Analytics survey available from http://www.rexeranalytics.com .

Regression Methods
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“curse of dimensionality.” As the number of predictors X, increases, not only 
will our ability to obtain a good model reduce, it also adds computational and 
interpretational complexity. We will introduce feature selection methods that 
can reduce the number of predictors or factors required to a minimum and 
still obtain a good model. We will explore the mechanics of using RapidMiner 
to do the data preparation, model building, and validation. Finally, in clos-
ing we will describe some checkpoints to ensure that linear regression is used 
correctly.

In the second section of this chapter we will discuss logistic regression. Strictly 
speaking, it is a classification technique, closer in its application to decision 
trees or Bayesian methods. But it shares an important characteristic with linear 
regression in its function-fitting methodology and thus merits inclusion in this 
chapter, rather than the previous one on classification.

We start by discussing how it is different from linear regression and when it 
makes sense to use it. We will then discuss logistic regression and its imple-
mentation using RapidMiner for a simple business analytics application. We 
will highlight the differences in the implementation of logistic regression in 
RapidMiner compared to other common tools. Finally, we will spend some 
time on explaining how to use a costing operator to selectively weight misclas-
sifications while using logistic regression.

What features would play a role in deciding the value of a home? For example, the number of rooms, its 
age, the quality of schools, its location with respect to major sources of employment, and its accessibility 
to major highways are some of the important considerations most potential home buyers would like to 
factor in. But which of these are the most significant influencers of the price? Is there a way to determine 
these? Once we know them, can we incorporate these factors in a model that can be used for predictions? 
The case study we discuss a little later in this chapter addresses this problem using multiple linear 
regression to predict the median home prices in an urban region given the characteristics of a home.
A common goal that all businesses have to address in order to be successful is growth, in revenues and profits. 
Customers are what will enable this to happen. Understanding and increasing the likelihood that someone 
will buy again from the company is therefore critical. Another question that would help strategically, for 
example in customer segmentation, is being able to predict how much money a customer is likely to spend, 
given data about their previous purchase habits. Two very important distinctions need to be made here: 
understanding why someone purchased from the company will fall into the realm of explanatory modeling 
whereas predicting how much someone is likely to spend will fall into the realm of predictive modeling. Both 
these types of models fall under a broader category of “Surrogate” or empirical models that rely on historical 
data to develop rules of behavior as opposed to “System” models which use fundamental principles (such as 
laws of physics or chemistry) to develop rules. See Figure 1.2 for a taxonomy of Data Mining. In this chapter, 

PREDICTING HOME PRICES VS. EXPLAINING WHAT FACTORS AFFECT  
HOME PRICES
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5.1 � LINEAR REGRESSION
5.1.1 � How it Works
Linear regression is not only one of the oldest predictive methodologies, but it also 
the most easily explained method for demonstrating function fitting. The basic 
idea is to come up with a function that explains and predicts the value of the tar-
get variable when given the values of the predictor variables. A simple example is 
shown in Figure 5.1: we would like to know the effect of the number of rooms in 
a house (predictor) on its median sale price (target). Each data point in the chart 

we focus on the predictive capability of models as opposed to the explanatory capabilities. Much of applied 
linear regression history of statistics has been used for explanatory needs. We will show with an example, for 
the case of logistic regression, how both needs can be met with good analytical interpretation of models.

Empirical Models

Predictive Explanatory

Supervised

RegressionClassification Clustering Association Rules

Unsupervised

PREDICTING HOME PRICES VS. EXPLAINING WHAT FACTORS AFFECT HOME 
PRICES—CONT’D
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corresponds to a house (Harrison, 1978). We can see that on average, increasing 
the number of rooms tends to also increase median price. This general statement 
can be captured by drawing a straight line through the data. The problem in linear 
regression is therefore to find a line (or a curve) that best explains this tendency. 
If we have two predictors, then the problem is to find a surface (in a three-dimen-
sional space). With more than two predictors, visualization becomes impossible 
and we have to revert to a general statement where we express the dependent (tar-
get) variable as a linear combination of independent (predictor) variable:

	y = b0 + b1x1 + b2x2 + ....+ bnxn	 (5.1)

Let’s consider a problem with one predictor. Clearly we can fit an infinite num-
ber of straight lines through a given set of points such as the ones shown in 
Figure 5.1. How do we know which one is the best? We need a metric that helps 
to quantify the different straight line fits through the data. Once we find this 
metric, then selecting the best line becomes a matter of finding the optimum 
value for this quantity.

A commonly used metric is the concept of an error function. Let’s suppose we 
fit a straight line through the data. In a single predictor case, the predicted value, 
ŷ, for a value of x that exists in the data set is then given by

	 	 (5.2)
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FIGURE 5.1
A simple regression model.
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Then, error is simply difference between the actual target value and predicted 
target value:

	 	 (5.3)

This equation defines the error at a single location (x, y) in the data set. We 
could easily compute the error for all existing points to come up with an aggre-
gate error. Some errors will be positive and others will be negative. We could 
square the difference to eliminate the sign bias and calculate an average error 
for a given fit as follows:

	
∑

e2 = 1/n * (yi − ẏi)
2 = 1/n

∑
(yi − b0 − bixi)

2

	 (5.4)

where n represents the number of points in the data set. For a given data set, 
we can then find the best combination of (b0, b1) that minimizes the error, 
e. This is a classical minimization problem, which is handled by methods of 
calculus. Stigler provides some interesting historical details on the origins of 
the method of least squares, as it is known (Stigler, 1999). It can be shown that 
b1 is given by

	b1 = Cor (y , x) * sd (y) /sd (x)	 (5.5a)

b0 = ymean - b1*xmean	 (5.5b)

where Cor(x,y) is the correlation between x and y (or y and x) and sd(y), sd(x) 
are the standard deviations of y and x.

Finally, xmean and ymean are the respective mean values.

Practical linear regression algorithms use an optimization technique known 
as gradient descent (Marquardt, 1963; Fletcher, 1963) to identify the combina-
tion of b0 and b1 that will minimize the error function given in Equation 5.4.  
The advantage of using such methods is that even with several predictors, the 
optimization works fairly robustly. When we apply such a process to the sim-
ple example shown above, we get an equation of the form

	Median Price = 9.1 * Number of Rooms − 34.7	 (5.6)

where b1 is 9.1 and b0 is –34.7. From this equation, we can calculate that 
for a house with six rooms, the value of the median price is about 20 (the 
prices are expressed in thousands of dollars). From Figure 5.1 we see that for 
a house with six rooms, the actual price can range between 10.5 and 25. We 
could have fit an infinite number of lines in this band, which would have all 
predicted a median price within this range—but the algorithm chooses the 
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line that minimizes the average error over the full range of the independent 
variable and is therefore the best fit for the given dataset.

For some of the points (houses) shown in Figure 5.1 (at the top of the 
chart, where median price = 50) the median price appears to be indepen-
dent of the number of rooms. This could be because there may be other 
factors that also influence the price. Thus we will need to model more than 
one predictor and will need to use multiple linear regression (MLR), which 
is an extension of simple linear regression. The algorithm to find the coef-
ficients of the regression equation 5.1 can be easily extended to more than 
one dimension.

MLR can be applied in any situation where a numeric prediction, for example 
“how much will something sell for,” is required. This is in contrast to making 
categorical predictions such as “will someone buy/not buy” and “will fail/will 
not fail,” where we use classification tools such as decision trees (Chapter 4) or 
logistic regression models (Section 5.4). In order to ensure regression models 
are not arbitrarily deployed, we must perform several checks on the model 
to ensure that the regression is accurate. This is discussed in more detail in 
Section 5.3.

5.1.2 � Case Study in RapidMiner: Objectives and Data
Let us extend the housing example introduced earlier in this chapter to 
include additional variables. This comes from a study of urban environ-
ments conducted in the late 1970s (Harrison, 1978). The full data set and 
information are available in many public databases.2 The objectives of this 
exercise are:

	 1.	� Identify which of the several attributes are required to accurately predict 
the median price of a house.

	 2.	� Build a multiple linear regression model to predict the median price 
using the most important attributes.

The original data consists of thirteen predictors and one response variable, 
which is the variable we are trying to predict. The predictors include physical 
characteristics of the house (such as number of rooms, age, tax, and location) 
and neighborhood features (school, industries, zoning) among others–refer 
to the original data source for full details. The response variable is of course 
the median value (MEDV) of the house in thousands of dollars. Table 5.1 
shows a snapshot of the data set, which has altogether 506 examples. Table 5.2 
describes the features or attributes of the data set.

2We use the data set described and presented here: http://archive.ics.uci.edu/ml/datasets/Housing. All 
data sets used in the book are available on our companion site.



Table 5.1  Sample view of the classic Boston Housing data set

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV

0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24
0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6
0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.9 5.33 36.2
0.02985 0 2.18 0 0.458 6.43 58.7 6.0622 3 222 18.7 394.12 5.21 28.7
0.08829 12.5 7.87 0 0.524 6.012 66.6 5.5605 5 311 15.2 395.6 12.43 22.9

0.14455 12.5 7.87 0 0.524 6.172 96.1 5.9505 5 311 15.2 396.9 19.15 27.1
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5.1.3 � How to Implement
In this section, we will show how to set up a RapidMiner process to build 
a multiple linear regression model for the Boston Housing dataset. We will 
describe the following:

	 1.	� Building a linear regression model
	 2.	� Measuring the performance of the model
	 3.	� Understanding the commonly used options for the Linear Regression 

operator
	 4.	� Applying the model to predict MEDV prices for unseen data

Step 1: Data Preparation
As a first step, let us separate the data into a training set and an “unseen” test 
set. The idea is to build the model with the training data and test its perfor-
mance on the unseen data. With the help of the Retrieve operator, import 
the raw data into the RapidMiner process (refer to Chapter 13 for details on 
loading data). Apply the Shuffle operator to randomize the order of the data 
so that when we separate the two partitions, they are statistically similar. Next, 
using the Filter Examples Range operator, divide the data into two sets as shown 
in Figure 5.2. The raw data has 506 examples, which will be linearly split into 
a training set (from row 1 to 450) and a test set (row 451 to 506) using the two 
operators.

Insert the Set Role operator, change the role of MEDV to “label” and con-
nect the output to a Split Validation operator’s input “tra” or training port 
as shown in Figure 5.3. The training data is now going to be further split 
into a training set and a validation set (keep the default Split Validation 
options as is, i.e., relative, 0.7, and shuffled). This will be needed in order to 
measure the performance of the linear regression model. It is also a good 

Table 5.2  Attributes of Boston Housing Data Set

	 1.	� CRIM per capita crime rate by town
	 2.	� ZN proportion of residential land zoned for lots over 25,000 sq.ft.
	 3.	� INDUS proportion of nonretail business acres per town
	 4.	� CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
	 5.	� NOX nitric oxides concentration (parts per 10 million)
	 6.	� RM average number of rooms per dwelling
	 7.	� AGE proportion of owner-occupied units built prior to 1940
	 8.	� DIS weighted distances to five Boston employment centers
	 9.	� RAD index of accessibility to radial highways
	10.	� TAX full-value property-tax rate per $10,000
	11.	� PTRATIO pupil-teacher ratio by town
	12.	� B 1000(Bk – 0.63)^2 where Bk is the proportion of blacks by town
	13.	� LSTAT % lower status of the population
	14.	� MEDV Median value of owner-occupied homes in $1000’s
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idea to set the local random seed (to default the value of 1992), which 
ensures that RapidMiner selects the same samples if we run this process at a  
later time.

After this step, double-click the Validation operator to enter the nested process. 
Inside this process insert the Linear Regression operator on the left window 
and Apply Model and Performance (Regression) in the right window as shown 
in Figure 5.4. Click on the Performance operator and check “squared error,” 
“correlation,” and “squared correlation” inside the Parameters options selector 
on the right.

Step 2: Model Building
Select the Linear Regression operator and change the “feature selection” option 
to “none.” Keep the default “eliminate collinear features” checked, which will 
remove factors that are linearly correlated from the modeling process. When 
two or more attributes are correlated to one another, the resulting model will 
tend to have coefficients that cannot be intuitively interpreted and furthermore 
the statistical significance of the coefficients also tends to be quite low. Also 
keep the “use bias” checked to build a model with an intercept (the b0 in Equa-
tion 5.2). Keep the other default options intact (Figure 5.5).

When we run this process we will generate the results shown in Figure 5.6 
(assuming that the “mod” and “ave” output ports from the Validation operator 

FIGURE 5.2
Separating the data into training and testing samples.

FIGURE 5.3
Using the split validation operator.
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are connected to the main output port): a Linear Regression model and an aver-
age Performance Vector output of the model on the validation set.

Step 3: Execution and Interpretation
There are two views that you can examine in the Linear Regression output 
tab: the Description view, which actually shows the function that is fitted 
(Figure 5.6a) and the more useful Data view, which not only shows the 
coefficients of the linear regression function, but also gives information 
about the significance of these coefficients (Figure 5.6b). The best way to 
read this table is to sort it by double-clicking on the column named “Code,” 
which will sort the different factors according to their decreasing level of 
significance. RapidMiner assigns four stars (****) to any factor that is 
highly significant.

In this model we did not use any feature selection method (see Figure 5.5) and 
as a result all 13 factors are in the model, including AGE and INDUS, which 
have very low significance; see the Text view in Figure 5.7a. However, if we 
were to run the same model by selecting any of the options that are avail-
able in the drop-down menu of the feature selection parameter (see Figure 5.5), 

Process

Process

Parameters

Linear Regression

Validation

Training Testing

Apply Model Preformance

Linear Regress

XML Context

FIGURE 5.4
Applying the linear regression operator and measuring performance.

FIGURE 5.5
Do not choose any feature selection option.
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RapidMiner would have removed the least significant factors from the model. 
In the next iteration, we use the greedy feature selection and this has removed 
the least significant factors, INDUS and AGE, from the function as seen in  
Figure 5.7b. Notice that the intercept and coefficients are slightly different for 
the new model.

FIGURE 5.6A
Description of the linear regression model.

FIGURE 5.6B
Tabular view of the model. Sort the table according to significance by double-clicking on the “Code” column.
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Feature selection in RapidMiner can be done automatically within the Linear 
Regression operator as described above or by using external “wrapper” func-
tions such as forward selection and backward elimination. These will be dis-
cussed separately in Chapter 12.

FIGURE 5.7A
Model without any feature selection.

FIGURE 5.7B
Model with “greedy” feature selection.
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The second output to pay attention to is the Performance: a handy check to test 
the goodness of fit in a regression model is the squared correlation. Conventionally 
this is the same as the adjusted R2 for a model, which can take values between 
0.0 and 1.0, with values closer to 1 indicating a better model. For either of the 
models shown above, we get a value around 0.67 (Figure 5.8). We also requested 
the squared error output: the raw value in itself may not tell us much, but this is 
useful in comparing two different models. In this case it was around 25.

One additional insight we can extract from the modeling process is ranking of the 
factors. The easiest way to check this is to rank by p-value. As seen in Figure 5.9,  
RM, LSTAT, and DIS seem to be the most significant factors. This is also reflected 

FIGURE 5.8
Generating the R2 for the model.

FIGURE 5.9
Ranking variables by their p-values.
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in their absolute t-stat values. The t-stat and p-values are the result of the 
hypothesis tests conducted on the regression coefficients. For the purposes of 
predictive analysis, the key takeaway is that a higher t-stat signals that the null 
hypothesis—which assumes that the coefficient is zero—can be safely rejected. 
The corresponding p-value indicates the probability of wrongly rejecting the 
null hypothesis. We already saw how the number of rooms (RM) was a good 
predictor of the home prices, but it was unable to explain all of the variations 
in median price. The R2 and squared error for that one-variable model were 
0.405 and 45, respectively. You can verify this by rerunning the model built 
so far using only one independent variable, the number of rooms, RM. This 
is done by using the Select Attributes operator, which has to be inserted in the 
process before the Set Role operator. When this model is run, we will obtain the 
equation shown earlier, Equation 5.6, in the model Description. By comparing 
the corresponding values from the MLR model (0.676 and 25) to the simple 
linear regression model, we see that both of these quantities have improved, 
thus affirming our decision to use multiple factors.

We now have a more comprehensive model that can account for much of the 
variability in the response variable, MEDV. Finally, a word about the sign of the 
coefficients: LSTAT refers to the percentage of low-income households in the 
neighborhood. A lower LSTAT is correlated with higher median home price, 
and this is the reason for the negative coefficient on LSTAT.

Step 4: Application to Unseen Test Data
We are now ready to deploy this model against the “unseen” data that was 
created at the beginning of this section using the second Filter Examples oper-
ator (Figure 5.2). We need to add a new Set Role operator, select MEDV under 
parameters and set it to target role “prediction” from the pull-down menu. Add 
another Apply Model operator and connect the output of Set Role to its “unl” 
or unlabeled port; additionally connect the output “mod”from the Validation 
process to the input “mod” or model port of the new Apply Model. What we 
have done is to change the attribute MEDV from the unseen set of 56 examples 
to a “prediction.” When we apply the model to this example set, we will be 
able to compare the prediction (MEDV) values to the original MEDV values 
(which exist in our set) to test how well our model would behave on new data. 
The difference between prediction (MEDV) and MEDV is termed “residual.” 
Figure 5.10 shows one way to quickly check the residuals for our model appli-
cation. We would need a Rename operator to change the name of “prediction 
(MEDV)” to “predictedMEDV” to avoid confusing RapidMiner when we use 
the next operator, Generate Attributes, to calculate residuals (the reader must 
try without using the Rename operator to understand this issue as it can pop 
up in other instances where Generate Attributes is used). Figure 5.11 shows the 
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statistics for this new attribute “residuals” which indicate that the mean is close 
to 0 (–0.275) but the standard deviation (and hence variance) at 4.350 is not 
quite small. The histogram also seems to indicate that the residuals are not 
quite normally distributed, which would be another motivation to continue 
to improve the model.

Process

Process

Add Entry Remove Entry Apply Cancel

Parameters

Generate Attributes

XML Context

FIGURE 5.10
Setting up a process to do the comparison between the unseen data and the model predicted values.
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FIGURE 5.11
Statistics of the residuals for the unseen data show that some model optimization may be necessary.
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5.1.4 � Checkpoints to Ensure Regression Model Validity
We will close this section on linear regression by briefly discussing several 
checkpoints to ensure that models are valid. This is a very critical step in the 
analytics process because all modeling follows the GIGO dictum of “garbage 
in, garbage out.” It is incumbent upon the analyst to ensure these checks are 
completed.

Checkpoint 1: One of the first checkpoints to consider before accepting any 
regression model is to quantify the R2, which is also known as the “coeffi-
cient of determination.” R2 effectively explains how much variability in 
the dependent variable is explained by the independent variables (Black, 
2008). In most cases of linear regression the R2 value lies between 0 and 1. The 
ideal range for r2 varies across applications; for example, in social and behavioral 
science models typically low values are acceptable. Generally, very low values ( ∼ 
< 0.2) indicate that the variables in your model do not explain the outcome sat-
isfactorily. A word of caution about overemphasizing the value of R2: When 
the intercept is set to zero (in RapidMiner, when you uncheck “use bias,”  
Figure 5.5), R2 values tend to be inflated because of the manner in which they 
are calculated. In such situations where you are required to have a zero inter-
cept, it makes sense to use other checks such as the mean and variance of the 
residuals.

Checkpoint 2: This brings us to the next check, which is to ensure that all error 
terms in the model are normally distributed. To do this check in RapidMiner, 
we could have generated a new attribute called “error,” which is the difference 
between the predicted MEDV and the actual MEDV in the test data set. This 
can be done using the Generate Attributes operator. This is what we did in step 
5 in the last section. Passing checks 1 and 2 will ensure that the independent 
and dependent variable are related. However this does not imply that the inde-
pendent variable is the cause and the dependent is the effect. Remember that 
correlation is not causation!

Checkpoint 3: Highly nonlinear relationships will result in simple regres-
sion models failing the above checks. However, this does not mean that 
the two variables are not related. In such cases it may become necessary 
to resort to somewhat more advanced analytical methods to test the rela-
tionship. This is best described and motivated by Anscombe’s quartet, pre-
sented in Chapter 3 Data Exploration.

5.2 � LOGISTIC REGRESSION
From a historical perspective, there are two main classes of predictive ana-
lytics techniques: those that evolved (Cramer, 2002) from statistics (such 
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as regression) and those that emerged from a blend of statistics, computer 
science, and mathematics (such as classification trees). Logistic regression 
arose in the mid-twentieth century as a result of the simultaneous develop-
ment of the concept of the logit in the field of biometrics and the advent of 
the digital computer, which made computations of such terms easy. So to 
understand logistic regression, we need to explore the logit concept first. The 
chart in Figure 5.12, adapted from data shown in Cramer (2002) shows the 
evolving trend from initial acceptance of the logit concept in the mid-1950s 
to the surge in references to this concept toward the latter half of the twen-
tieh century. The chart is an indicator of how important logistic regression 
has become over the last few decades in a variety of scientific and business 
applications.

5.2.1 � A Simple Explanation of Logistic Regression
To introduce the logit, we will consider a simple example. Recall that lin-
ear regression is the process of finding a function to fit the x’s that vary  
linearly with y with the objective of being able to use the function as a 
model for prediction. The key assumptions here are that both the predictor 
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Growth of logistic regression applications in statistical research.
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and target variables are continuous, as seen in the chart in Figure 5.13. 
Intuitively, one can state that when x increases, y increases along the slope 
of the line.

What happens if the target variable is not continuous? Suppose our target 
variable is the response to advertisement campaigns—if more than a thresh-
old number of customers buy for example, then we consider the response 
to be 1; if not the response is 0. In this case, the target (y) variable is discrete 
(as in Figure 5.14); the straight line is no longer a fit as seen in the chart. 
Although we can still estimate—approximately—that when x (advertising 
spend) increases, y (response or no response to a mailing campaign) also 
increases, there is no gradual transition; the y value abruptly jumps from 
one binary outcome to the other. Thus the straight line is a poor fit for this 
data.

On the other hand, take a look at the S-shaped curve in Figure 5.15. This is 
certainly a better fit for the data shown. If we then know the equation to this 
“sigmoid” curve, we can use it as effectively as we used the straight line in the 
case of linear regression.

Logistic regression is thus the process of obtaining an appropriate nonlinear 
curve to fit the data when the target variable is discrete. How is the sigmoid 
curve obtained? How does it relate to the predictors?
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Linear Regression Model. We can make an intuitive
assessment that increase in Ad spend also increases 
Sales.

FIGURE 5.13
Goal of linear regression.
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Response vs. Ad Spend

Linear Fit for a Binary outcome: Although we can
make an intuitive assessment that increase in Ad spend
increases Response, the switch is abrupt - around 0.6.
Using the straight line, we cannot really predict outcome.

FIGURE 5.14
Fitting a linear model to discrete data.
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spend increases Sales, and we may also be able to predict
using this model.

FIGURE 5.15
Fitting a nonlinear curve to discrete data.
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5.2.2 � How It Works
Let us reexamine the dependent variable, y. If it is binomial, that is, it can 
take on only two values (yes/no, pass/fail, respond/does not respond, and so 
on), then we can encode y to assume only two values: 1 or 0. Our challenge 
is to find an equation that functionally connects the predictors, x, to the out-
come y where y can only take on two values: 0 or 1. However ,the predictors 
themselves may have no restrictions: they could be continuous or categorical. 
Therefore, the functional range of these unrestricted predictors is likely to be 
also unrestricted (between –∞ to +∞). To overcome this problem, we must map 
the continuous function to a discrete function. This is what the logit helps us 
to achieve.

How Does Logistic Regression Find the Sigmoid Curve?
As we observed in Equation 5.1, a straight line can be depicted by only two 
parameters: the slope (b1) and the intercept (b0). The way in which x’s and 
y are related to each other can be easily specified by b0 and b1. However an 
S-shaped curve is a much more complex shape and representing it parametri-
cally is not as straightforward. So how does one find the mathematical param-
eters to relate the x’s to the y?

It turns out that if we transform the target variable y to the logarithm of the 
odds of y, then the transformed target variable is linearly related to the predic-
tors, x. In most cases where we need to use logistic regression, the y is usually 
a yes/no type of response. This is usually interpreted as the probability of an 
event happening (y = 1) or not happening (y = 0). Let us deconstruct this as 
follows:

	 n	� If y is an event (response, pass/fail, etc.),
	 n	� and p is the probability of the event happening (y = 1),
	 n	� then (1 – p) is the probability of the event not happening (y = 0),
	 n	� and p/(1 – p) are the odds of the event happening.

The logarithm of the odds, log (p/1 – p) is linear in the predictors, X, and log 
(p/1 – p) or the log of the odds is called the logit function.

We can express the logit as a linear function of the predictors X, similar to the 
linear regression model shown in Equation 5.1 as

	logit = log p/(1 − p) = b0x + b1	 (5.7)

For a more general case, involving multiple independent variables, x, we 
have

	logit = b0 + b1x1 + b2x2 + ....+ bnxn	 (5.8)
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The logit can take any value from –∞ to +∞. For each row of predictors in a data 
set, we can now compute the logit. From the logit, it is easy to then compute 
the probability of the response y (occurring or not occurring) as seen below:

	p = elogit/(1 + elogit)	 (5.9)

The logistic regression model from Equation 5.8 ultimately delivers the prob-
ability of y occurring (i.e., y = 1), given specific value(s) of X via Equation 5.9. 
In that context, a good definition of logistic regression is that it is a mathemat-
ical modeling approach in which a best-fitting, yet least-restrictive model is selected 
to describe the relationship between several independent explanatory variables and a 
dependent binomial response variable. It is least restrictive because the right side 
of Equation 5.8 can assume any value from –∞ to +∞. Cramer (2002) provides 
more background on the history of the logit function.

From the data given we know the x’s and using Equations 5.8 and 5.9 we can 
compute the p for any given x. But to do that, we first need to determine the 
coefficients, b, in Equation 5.8. How is this done? Let us assume that we start 
out with a trial of values for b. Given a training data sample, we can compute 
the following quantity:

where y is our original outcome variable (which can take on 0 or 1) and p is 
the probability estimated by the logit equation (Equation 5.9). For a specific 
training sample, if the actual outcome was y = 0 and our model estimate of p 
was high (say 0.9), i.e., the model was “wrong,” then this quantity reduces to 
0.1. If the model estimate of probability was low (say 0.1), i.e., the model was 
“good,” then this quantity increases to 0.9. Therefore, this quantity, which is 
a simplified form of a likelihood function, is maximized for good estimates and 
minimized for poor estimates. If we compute a summation of the simplified like-
lihood function across all the training data samples, then a high value indicates 
a good model (or good fit) and vice versa.

In reality, nonlinear optimization techniques are used (methods such as a gen-
eralized reduced gradient search) to search for the coefficients, b, with the objec-
tive of maximizing the likelihood of correct estimation (or py * (1 – p)(1 – y),  
summed over all training samples). More sophisticated formulations of likeli-
hood estimators are used in practice (Eliason, 1993). Assuming we have used 
a software package like RapidMiner to perform this optimization to generate 
a model, let us examine how to interpret and apply the model. In the next 
section, we will walk through a step-by-step process to build the model using 
RapidMiner.
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In the 1912 shipwreck of the HMS Titanic, hundreds 
of people perished as the ship struck an iceberg 
in the North Atlantic (Hinde, 1998). When we 
dispassionately analyze the data, we see a couple of 
basic patterns emerge. 75% of the women and 63% 
of first class passengers survived. If a passenger 
was a woman and if she traveled first class, her 
probability of survival was 97%! The scatterplot 
in Figure 5.16 below depicts this in an easy to 
understand way (see the bottom right cluster).

A data mining competition used the information from this 
event and challenged analysts to develop an algorithm 
that could classify the passenger list into survivors and 
nonsurvivors (see http://www.kaggle.com/c/titanic-
gettingStarted). We use the training data set provided 
there as an example3 to demonstrate how logistic 
regression could be employed to make this prediction 
and also to interpret the coefficients from the model.

Table 5.3 shows part of a reduced data set consisting 
only of three variables: travel class of the passenger 
(pclass = 1st, 2nd, or 3rd), sex of the passenger (0 
for male and 1 for female), and the label variable 
“survived” (true or false). When we fit a logistic 
regression model to this data consisting of 891 
samples, we get the following equation for predicting 
the class “survived = false” (the details of a generic 
setup process will be described in the next section):

	logit= − 0.6503− 2.6417 * sex+ 0.9595 * pclass	 (5.10)

Comparing this to Equation 5.8, we see that b0 
= –0.6503, b1 = –2.6417, and b2 = 0.9595. How 
do we interpret these coefficients? In order to 
do this, we need to recall Equation 5.9,

	p= elogit/(1+ elogit)	

which indicates that as logit increases to a large positive 
quantity, the probability that the passenger did not 
survive (survived = false) approaches 1. More specifically, 
when logit approaches –∞, p approaches 0 and when logit 
approaches +∞, p approaches 1. The negative coefficient 

on variable “sex” indicates that this probability reduces 
for females (sex = 1) and the positive coefficient on 
variable p indicates that the probability of not surviving 
(survived = false) increases the higher the number of the 
travel class. This verifies the intuitive understanding that 
was provided by the scatterplot shown in Figure 5.16.

We can also examine the “odds” form of the logistic 
regression model, which is given below:

	odds (survived= false) = e− 0.6503 * 2.6103pclass * 0.0712sex 	
(5.11)

Recall that logit is simply given by log(odds) and we are 
essentially dealing with the same equation as Equation 
5.10. A key fact to observe is that a positive coefficient 
in the logit model translates into a coefficient higher 
than 1 in the odds model (the number 2.6103 in the 
above equation is e0.9595 and 0.0712 is e−2.6417) and a 
negative coefficient in the logit model translates into 
coefficients smaller than 1 in the odds model. Again 
it is clear that odds of not surviving increases with 
travel class and reduces with gender = female.

An odds ratio analysis will reveal the value of computing 
the results in this format. Consider a female 
passenger (sex = 1). We can calculate the survivability 
for this passenger if she was in 1st class (pclass = 1) 
versus if she was in 2nd class as an odds ratio:

	 	

Based on the Titanic data set, the odds that a 
female passenger would not survive if she was in 
2nd class increases by a factor of 2.6 compared 
to her odds if she was in 1st class. Similarly the 
odds that a female passenger would not survive 
increases by nearly seven times if she was in 3rd 
class! In the next section, we discuss the mechanics 
of logistic regression and also the process of 
implementing a simple analysis using RapidMiner.

3All data sets are made available through the companion site for this book.

A SIMPLE BUT TRAGIC EXAMPLE
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3rd
class

survived false true Unknown

2nd
class

1st
class

male femalesex

FIGURE 5.16
Probability of survival in the Titanic wreck based on gender and travel class.

Table 5.3  Portion of the Data Set from the Titanic Example

pclass sex survived?

3.0 male 0.0
1.0 female 1.0
3.0 female 1.0
1.0 female 1.0
3.0 male 0.0
3.0 male 0.0
1.0 male 0.0
3.0 male 0.0
3.0 female 1.0
2.0 female 1.0
3.0 female 1.0
1.0 female 1.0
3.0 male 0.0
3.0 male 0.0
3.0 female 0.0
2.0 female 1.0
3.0 male 0.0
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5.2.3 � How to Implement
The data we used comes from an example4 for a credit scoring exercise. The 
objective is to predict DEFAULT (Y or N) based on two predictors: loan 
age (business age) and number of days of delinquency. There are 100 samples 
Table 5.4.

Step 1: Data Preparation
Load the spreadsheet into RapidMiner. Remember to set the DEFAULT column 
as “Label.” Split the data into training and test samples using the Split Valida-
tion operator.

Step 2: Modeling Operator and Parameters
Add the Logistic Regression operator in the “training” subprocess of the 
Split Validation operator. Add the Apply Model operator in the “testing” sub-
process of the Split Validation operator. Just use default parameter values. 
Add the Performance (Binominal) evaluation operator in the “testing” sub-
process of Split Validation operator. Check the Accuracy, AUC, Precision, 
and Recall boxes in the parameter settings. Connect all ports as shown in 
Figure 5.17.

Step 3: Execution and Interpretation
Run the model and view results. In particular check for the kernel model, 
which shows the coefficients for the two predictors and the intercept. The bias 
(offset) is −1.820 and the coefficients are given by: w[BUSAGE]=0.592 and 

4http://chem-eng.utoronto.ca/∼datamining/dmc/datasets/credit_scoring.txt. All data sets are available at 
the companion site.

Table 5.4  A Sample From the Loan Default Dataset

[BUSAGE] [DAYSDELQ] [DEFAULT]

87.0 2.0 N
89.0 2.0 N
90.0 2.0 N
90.0 2.0 N

101.0 2.0 N
110.0 2.0 N
115.0 2.0 N
115.0 2.0 N
115.0 2.0 N

117.0 2.0 N
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FIGURE 5.17
Setting up the RapidMiner process for a logistic regression model.

FIGURE 5.18
Confusion matrix for the testing sample.

w[DAYSDELQ]=2.045. Also check the confusion matrix for Accuracy, Preci-
sion, and Recall and finally view the ROC curves and check the area under the 
curve or AUC. Chapter 8 Model Evaluation provides further details on these 
important performance measures.

The accuracy of the model based on the 30% testing sample is 83%. The ROC 
curves have an AUC of 0.863. The next step would be to review the kernel 
model and prepare for deploying this model. Are these numbers acceptable? 
In particular, pay attention to the class recall (bottom row of the confusion 
matrix in Figure 5.18). The model is quite accurate in predicting if someone 
is NOT a defaulter (91.3%), however its performance when it comes to iden-
tifying if someone IS a defaulter is questionable. For most predictive appli-
cations, the cost of wrong class predictions is not uniform. That is, a false 
positive (in the above case identifying someone as a defaulter, when they are 
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not) may be less expensive than a false negative (in this above case identi-
fying someone as a nondefaulter, when they actually are). There are ways to 
weight the cost of misclassification, and RapidMiner allows this thorugh use 
of the MetaCost operator.

Step 4: Using MetaCost
Nest the Logistic Regression operator inside a MetaCost operator to improve 
class recall. The MetaCost operator is now placed inside Split Validation oper-
ator. Configure the MetaCost operator as shown in Figure 5.19. Notice that 
false negatives have twice the cost of false positives. The actual values of these 
costs can be further optimized using an optimization loop—optimization is 
discussed for general cases in Chapter 13.

When this process is run, the new confusion matrix that results is shown in 
Figure 5.20. The overall accuracy has not changed much. Note that while the 
class recall for the Default = Yes class has increased from 57% to 71%, but 
this has come at the price of reducing the class recall for Default = No from 
91% to 87%. Is this acceptable? Again the answer to this comes from exam-
ining the actual business costs. More details about interpreting the confusion 

FIGURE 5.20
Improved classification performance with the usage of MetaCost operator.

Process

Process Validation

Parameters

cost matrix

MetaCost

XML Context

FIGURE 5.19
Configuring the MetaCost operator to improve class recall performance.
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FIGURE 5.21
Default logistic regression model in RapidMiner is based on SVM.

matrix and evaluating the performance of classification models is provided 
in Chapter 8 Model Evaluation.

Step 5: Applying the Model to an Unseen Data Set
In RapidMiner, logistic regression is calculated by creating a support vector 
machine (SVM) with a modified loss function (Figure 5.21). SVMs were intro-
duced in Chapter 4 on classification. That’s the reason why you see support 
vectors at all (if you want a “standard” logistic regression, you may use the 
W-Logistic from the Weka extension to RapidMiner). Weka is another open 
source implementation of data mining algorithms (see http://www.cs.waikato.
ac.nz/ml/weka/) and many of these implementations are available within 
RapidMiner. The Titanic example was analyzed using the W-logistic operator 
and it is highly recommended for applications where interpreting coefficients 
is valuable. Furthermore, the Weka operator may be faster for certain applica-
tions than the native SVM-based RapidMiner implementation. Refer to Chap-
ter 4 for details on the mechanics and interpretation of an SVM model.

5.2.4 � Summary Points for Logistic Regression Modeling
	 n	� Logistic regression can be considered equivalent to using linear 

regression for situations where when the target (or dependent) variable 
is discrete, i.e., not continuous. In principle, the response variable or 
label is binomial. A binomial response variable has two categories: 
Yes/No, Accept/Not Accept, Default/Not Default, and so on. Logistic 
regression is ideally suited for business analytics applications where the 
target variable is a binary decision (fail/pass, response/no response, etc). 
In RapidMiner, such variables are called “binominal.”

	 n	� Logistic regression comes from the concept of the “logit.” The logit is 
the logarithm of the odds of the response, y, expressed as a function of 
independent or predictor variables, x, and a constant term. That is, for 
example, log (odds of y = Yes) = b1x + b0.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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	 n	� The above logit gives the odds of the “Yes” event, however if we want 
probabilities, we need to use the transformed equation below:
	
p (y = “ Yes ” ) = 1/(1 + e( − b1x − b0))	

	 n	� The predictors can be either numerical or categorical for standard 
logistic regression. However in RapidMiner, the predictors can only be 
numerical, because it is based on the SVM formulation.

CONCLUSION
This chapter explored two of the most common function-fitting methods. 
Function-fitting methods are one of the earliest predictive modeling tech-
niques based on the concept of supervised learning. The multiple linear regres-
sion model works with numeric predictors and a numeric label and is thus 
one of the go-to methods for numeric prediction tasks. The logistic regression 
model works with numeric or categorical predictors and a categorical (typi-
cally, binomial) label. We explained how a simple linear regression model is 
developed using the methods of calculus and discussed how feature selection 
impacts the coefficients of a model. We explained how to interpret the signif-
icance of the coefficients using the t-stat and p-values and finally laid down 
several checkpoints one must follow to build good quality models. We then 
introduced logistic regression by comparing the similar structural nature of 
the two function-fitting methods. We discussed how a sigmoid curve can better 
fit predictors to a binomial label and introduced the concept of logit, which 
enables us to transform a complex function into a more recognizable linear 
form. We discussed how the coefficients of logistic regression can be inter-
preted and how to measure and improve the classification performance of the 
model. We finally ended the section by pointing out the differences between 
the implementation of standard logistic regression and RapidMiner’s version.
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CHAPTER 6

The beer and diaper association story in Analytics circle is (urban) legendary 
(Power, 2002). There are many variations of this story, but the basic idea is that 
a supermarket company discovered that customers who buy diapers also tend to 
buy beer. The beer and diaper relationship heralded what unusual, unknown, 
and quirky nuggets can be learned from the purchase transaction data of a super-
market. How did the supermarket determine such a relationship between prod-
ucts existed? Answer: data mining. Specifically, association analysis.

Association analysis measures the strength of co-occurrence between one item 
and another. The objective of this class of data mining algorithms is not to 
predict an occurrence of an item, like classification or regression do, but to find 
usable patterns in the co-occurrences of the items. Association rules learning is 
a branch of an unsupervised learning process that discovers hidden patterns in 
data, in the form of easily recognizable rules.

Association algorithms are widely used in retail analysis of transactions, recom-
mendation engines, and online clickstream analysis across web pages. One of the 
popular applications of this technique is called market basket analysis, which finds 
co-occurrences of one retail item with another item within the same retail pur-
chase transaction (Agrawal et al., 1993). If patterns within data tell us that baby 
formula and diapers are usually purchased together in the same transaction, a 
retailer can take advantage of this association for bundle pricing, product place-
ment, and even shelf space optimization within the store layout. Similarly, in 
an online business setting, this information can be leveraged for real-time cross 
selling, recommendations, cart offers and post purchase marketing strategies. In 
the case of retail business, many of the association rules results are commonly 
known, for example a burger with fries or baby formula with diapers; however, 
uncommon relationships are the prized discoveries, the ones businesses can take 
advantage of. The downside is association analysis may also yield spurious rela-
tionships between items. When dealing with data containing billions of trans-
actions, we would find transactions with all kinds of possibilities with strange 
combinations of item sets (e.g., nicotine patch and cigarettes). It takes analytical 
skill and business knowledge to successfully apply the outcome of association 

Association Analysis
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analysis. The model outcome of an association analysis can be represented as a 
set of rules, like the one below:

	{Item A} - > {Item B}	

This rule indicates that based on the history of all the transactions, if Item A is 
found in a transaction or a basket, there is a strong propensity of occurrence of 
Item B within the same transaction. Here, Item A is the antecedent or premise of 
the rule and Item B is consequent or conclusion of the rule. The antecedent and 
consequent of the rule can contain more than one item, like {Item A and Item 
C}. To mine these kinds of rules from the data, we would need to analyze all 
previous customer purchase transactions. In a retail business, there would be 
millions of transactions made in a day with thousands of Stock Keeping Units 
(SKU), which are unique identifiers for a product or an item sold and stocked. 
Hence, two of the key considerations of association analysis are computational 
time and resources. However, over the last two decades newer and more effi-
cient algorithms have been developed to mitigate this problem.

Consider an e-commerce website that sells a large 
selection of products online. One of the objectives in 
managing e-commerce business is to increase the average 
order value of the visit. Optimizing order size is even more 
critical when the businesses pay for acquisition traffic 
through search engine marketing, online advertisements, 
and affiliate marketing. Businesses attempt to increase 
average order value by cross-selling and up-selling 
relevant products to the customer, many times based on 
what they have purchased or are currently purchasing in 
the current transaction (a common fast-food equivalent: 
“Do you want fries with the burger?”). Businesses need 
to be careful by weighing the benefit of suggesting an 
extremely relevant product against the risk of irritating 
a customer who is already making a transaction. In a 
business where there are limited products (e.g., fast-food 
industry), cross-selling a product with another product is 
straightforward and is quite inherent in the business. But, 
when the number of unique products runs in thousands 
and millions, determining a set of affinity products when 
customers are looking at a product is quite a tricky problem.

To better learn about product affinity, we turn to purchase 
history data. The information on how one product creates 
affinity to another product relies on the fact that both 

the products appear in the same transaction. If two 
products are bought together, then we can speculate 
that the necessity of those products arise in the same 
time frame for the customer. If the two products are 
bought together many times, by a large number of 
customers, then there is definitely an affinity pattern 
within these products. In a new later transaction, if a 
customer picks one of those affinity products, then there 
is an increased likelihood that the other product will be 
picked by the customer, in the same transaction.

The key input for affinity analysis is a list of past 
transactions with product information. Based on the 
analysis of these transactions, we can determine what 
the most frequent product pairs are. We need to define 
a threshold for “frequent” because a few appearances 
of a product pair doesn’t qualify as a pattern. The result 
of the affinity analysis is a rule set that says, “If product 
A is purchased, there is an increased likelihood that 
product B will be purchased in the same transaction.” 
This rule set can be leveraged to provide cross sell 
recommendations on the product page of product A. 
Affinity analysis is the concept behind the web widgets 
which state, “Customers who bought this also bought…”

CROSS SELLING: CUSTOMERS WHO BOUGHT THIS ALSO BOUGHT…
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6.1 � CONCEPTS OF MINING ASSOCIATION RULES
Basic association analysis just deals with the occurrence of one item with 
another. More complicated analysis can take into consideration the quantity 
of occurrence, price, and sequence of occurrence, etc. The method for finding 
association rules through data mining involves the following sequential steps:

Step 1: Prepare the data in transaction format. An association algorithm 
needs input data to be formatted in a particular format.
Step 2: Short-list frequently occurring item sets. Item sets are combination 
of items. An association algorithm limits the analysis to the most 
frequently occurring items, so the final rule set extracted in next step is 
more meaningful.
Step 3: Generate relevant association rules from item sets. Finally, the 
algorithm generates and filters the rules based on the interest measure.

To start with, let’s consider a media website, like BBC or Yahoo News, with 
categories such as news, politics, finance, entertainment, sports, and arts. A ses-
sion or transaction in this example is one visit for the website, where the same 
user accesses content from different categories, within a certain session period. 
A new session usually starts after 30 minutes of inactivity. Sessions are very 
much similar to transactions in a traditional brick and mortar model and the 
pages accessed can be related to items purchased. In online news sites, items 
are visits to the categories such as News, Finance, Entertainment, Sports, and 
Arts. We can collect the data as shown in Table 6.1, with a list of sessions and 
media categories accessed during a given session. Our objective in this data 
mining task is to find associations between media categories.

For association analysis of these media categories, we would need a data set 
in a particular transaction format. To get started with association analysis, it 
would be helpful to pivot the data in the format shown in Table 6.2.

This binary format indicates the presence or absence of article categories and 
ignores qualities such as minutes spent viewing or the sequence of access, which 
can be important in certain sequence analyses. For now, we are focusing on basic 
association analysis and we shall review the terminologies used in association rules.

Table 6.1 

Session ID List of media categories accessed

1 {News, Finance}
2 {News, Finance}
3 {Sports, Finance, News}
4 {Arts}
5 {Sports, News, Finance}

6 {News, Arts, Entertainment}
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6.1.1 � Item Sets
In the examples of association rules we discussed so far, the antecedent 
and consequent of the rules had only one item. But, as mentioned before, 
they can involve multiple items. For example a rule can be of the following  
sort:

	{News, Finance} - > {Sports}	

This rule implies, if users have accessed news and finance in the same ses-
sion, there is a high likelihood that they would also access sports articles, 
based on historical transactions. The combination of news and finance item 
is called an item set. An item set can occur either in the antecedent or in the 
consequent portion of the rule; however, both sets should be disjointed, 
which means there should not be any common item on both sides of the 
rules. Obviously, there is no practical relevance for the rules like “News and 
Finance users are most likely to visit News and Sports page.” Instead, rules 
like “If users visited Finance page they are more likely to visit News and 
Sports page” make more sense. Introduction of the item set with more than 
one item greatly increases the permutations of rules to be considered and 
tested for the strength of relationships.

The strength of an association rule is commonly quantified by the support and 
confidence measures of a rule. There are few more quantifications like lift and 
conviction measures that can be used in special cases. All these measures are 
based on the relative frequency of occurrences of a particular item set in the 
transactions data set used for training. Hence, it is important that the training 
set used for rule generation is unbiased and truly represents the universe of 
transactions. We will go through each of these frequency metrics in the follow-
ing sections.

Support
The support of an item is simply the relative frequency of occurrence of an item 
set in the transaction set. In the data set shown in Table 6.2, support of {News} 
is five out of six transactions, 5/6 = 0.83. Similarly, support of an item set 

Table 6.2  Clickstream Data Set

Session ID News Finance Entertainment Sports Arts

1 1 1 0 0 0
2 1 1 0 0 0
3 1 1 0 1 0
4 0 0 0 0 1
5 1 1 0 1 0

6 1 0 1 0 1
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{News, Finance} is the co-occurrence of both news and finance in a transac-
tion with respect to all the transactions:

Support({News}) = 5/6 = 0.83
Support({News, Finance}) = 4/6 =0.67
Support({Sports}) = 2/6 = 0.33

The support of a rule is a measure of how all the items in a rule are represented 
in overall transactions. For example, in the rule {News}->{Sports}, News and 
Sports occur in two of six transactions and hence support for the rule {News} ->  
{Sports} is 0.33. The support measure for a rule indicates whether a rule is 
worth considering. Since the support measure favors the items where there is 
high occurrence, it uncovers the patterns that are worth taking advantage of and 
investigating. This is particularly interesting for businesses because leveraging 
patterns in high volume items leads to more incremental revenue. Rules with 
low support have either infrequently occurring items or an item relationship 
occurs just by chance, which may yield spurious rules. In association analysis, 
a threshold of support is specified to filter out infrequent rules. Any rule that 
exceeds the support threshold is then considered for further analysis.

Confidence
The confidence of a rule measures the likelihood of occurrence of the conse-
quent of the rule out of all the transactions that contain the antecedent of the 
rule. Confidence provides the reliability measure of the rule. Confidence of the 
rule (X -> Y) is calculated by

	
Confidence (X -> Y) =

Support(X∪Y)

Support (X) 	 (6.1)

In the case of the rule {News, Finance} -> {Sports}, the question that the con-
fidence measure answers is, if an transaction has both News and Finance, what 
is the likelihood of seeing Sports in it?

	

Confidence ({News, Finance} -> {Sports}) = Support ({News, Finance, Sports})
Support ({News, Finance})

= 2/6
4/6

= 0.5 	
Half of the transactions that contain News and Finance also contain Sports. This 
means 50% of users who visit the news and finance pages also visit sports pages.

Lift
Though confidence of the rule is widely used, the frequency of occurrence of a 
rule consequent (conclusion) is largely ignored. In some transaction item sets, 
this can provide spurious scrupulous rule sets because of the presence of infre-
quent items in the rule consequent. To solve this, we can have the support of 
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a consequent in the denominator of a confidence calculation. This measure is 
called the lift of the rule. The lift of the rule can be calculated by

	 	 (6.2)

In the case of our example:

	 	

Lift is the ratio of the observed support of {News + Finance} and {Sports} with 
what is expected if {News + Finance} and {Sports} usage were completely 
independent. Lift values closer to 1 mean the antecedent and consequent of 
the rules are independent and the rule is not interesting. The higher the value 
of lift, the more interesting the rules are.

Conviction
The conviction of the rule X -> Y is the ratio of the expected frequency of X occur-
ring in spite of Y and the observed frequency of incorrect predictions. Conviction 
takes into account the direction of the rule. The conviction of (X -> Y) is not the 
same as conviction of (Y -> X). Conviction of a rule (X -> Y) can be calculated by

	
Conviction (X -> Y) =

1 − Support (Y)

1 − Confidence (X → Y) 	 (6.3)

For our example,

	
Conviction ({news, finance} -> {sports}) =

1 − 0.33

1 − 0.5
= 1.32

	

A conviction of 1.32 means that the rule ({News, Finance} -> {Sports}) would 
be incorrect 32% more often if the relationship between {News, Finance} and 
{Sports} is purely random.

6.1.2 � The Process of Rule Generation
The process of generating meaningful association rules from the data set can be 
broken down into two basic tasks.

	 1.	� Finding all frequent item sets. For an association analysis of n items 
it is possible to find 2n – 1 item sets excluding the null item set. As 
the number of items increase, there is an exponential increase in the 
number of item sets. Hence it is critical to set a minimal support 
threshold to discard less frequently occurring item sets in the transaction 
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universe. All possible item sets can be expressed in a visual lattice form 
like the diagram shown in Figure 6.1. In this figure one item {Arts} is 
excluded from the item set generation. It is not uncommon to exclude 
items so that the association analysis can be focused on subset of 
important relevant items. In Supermarket example, some filler items 
like grocery bag can be excluded from the analysis. An item set tree (or 
lattice) helps demonstrate the methods to easily find frequent item sets.

	 2.	� Extracting rules from frequent item sets. For the data set with n items it is 
possible to find 3n – 2n+1 + 1 rules (Tan et al., 2005). This step extracts 
all the rules with a confidence higher than a minimum confidence 
threshold.

This two-step process generates hundreds of rules even for a small data set with 
dozens of items. Hence it is important to set a reasonable support and confi-
dence threshold to filter out less frequent and less relevant rules in the search 
space. The generated rules can also be evaluated with support, confidence, lift, 
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and conviction measures. In terms of computational requirements, finding 
all the frequent item sets above a support threshold is more expensive than 
extracting the rules. Fortunately, there are some algorithmic approaches to effi-
ciently find the frequent item sets. The Apriori and FP-Growth algorithms are 
two of the most popular association analysis algorithms.

6.2 � APRIORI ALGORITHM
All association rule algorithms should efficiently find the frequent item sets 
from the universe of all the possible item sets. The Apriori algorithm leverages 
some simple logical principles on the lattice item sets to reduce the number of 
item sets to be tested for the support measure (Agrawal & Srikant, 1994). The 
Apriori principles states that “If an item set is frequent, then all its subset items will 
be frequent.” (Tan et al, 2005). The item set is “frequent” if the support for the 
item set is more that support threshold.

For example, if the item set {News, Finance, Sports} from the data set shown 
in Table 6.2 is a frequent item set, that is, its support measure (0.33) is higher 
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than the threshold support measure k (say, 0.25), then all of its subset items or 
item set will be frequent item sets. Subset item sets will have a support measure 
higher than or equal to the parent item set. Figure 6.2 shows the application of 
the Apriori principle in a lattice. The support measures of the subset item sets 
for {News, Finance, Sports} are

Support {News, Finance, Sports} = 0.33 (above threshold support)
Support {News, Finance} = 0.66
Support {News, Sports} = 0.33
Support {News} = 0.83
Support {Sports} = 0.33
Support {Finance} = 0.66

Conversely, if the item set is infrequent, then all its supersets will be infrequent. 
In this example, support of Entertainment is 0.16, and the support of all the 
supersets that contain Entertainment as an item will be less than or equal to 
0.16, which is infrequent when considering the support threshold of 0.25. 
Superset exclusion of an infrequent item is shown in Figure 6.3.
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The Apriori principle is helpful because not all item sets have to be consid-
ered for a support calculation and tested for the support threshold; hence 
generation of the frequent item sets can be handled efficiently by eliminat-
ing a bunch of item sets that have an infrequent item or item sets (Bodon, 
2005).

6.2.1 � Frequent Item Set Generation Using the Apriori 
Principle

Let’s consider the data set shown in Table 6.3, which is the condensed version 
of the example set discussed above. In this data set there are six transactions. If 
the support threshold is assumed to be 0.25, then we expect all items should 
appear in at least two out of six transactions.

We can now calculate support count and support for all item set(s). Support 
count is the absolute count of the transactions and support is the ratio of sup-
port count to total transaction count. Any one item set below the threshold 
support count (which is 2 in this example) can be eliminated from further 
processing. Table 6.4 shows the support count and support calculation for 
each item. Since {Entertainment} has a support count less than the threshold, 
it can been eliminated for the next iteration of item set generation. The next 
step is generating possible two-item set generations for {News}, {Finance}, 
and {Sports}, which yield three two-item sets. If the {Entertainment} item 
set is not eliminated, we would obtain six two-item sets. Figure 6.4 shows the 
visual representation of the item sets with elimination of {Entertainment} 
item.

This process is continued until all n-item sets are considered from previous 
sets. At the end, there are seven frequent item sets passing the support thresh-
old. The total possible number of item sets is 15 (= 24 – 1). By eliminating 
{Entertainment} in the first step, we don’t have to generate seven additional 
item sets that would not pass the support threshold anyway (Witten & Frank, 
2005).

Table 6.3  Clickstream Data Set: Condensed Version

Session News Finance Entertainment Sports

1 1 1 0 0
2 1 1 0 0
3 1 1 0 1
4 0 0 0 0
5 1 1 0 1

6 1 0 1 0
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Table 6.4  Frequent Item Set Support Calculation

Item Support Count Support

{News} 5 0.83
{Finance} 4 0.67
{Entertainment} 1 0.17
{Sports} 2 0.33

Two-Item Sets Support Count Support
{News, Finance} 4 0.67
{News, Sports} 2 0.33
{Finance, Sports} 2 0.33

Three-Item Sets Support Count Support

{News, Finance, Sports} 2 0.33
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6.2.2 � Rule Generation
Once the frequent item sets are generated, the next step in association analysis 
is generating useful rules which have a clear antecedent (premise) and conse-
quent (conclusion), in the format of the following rule:

	{Item A} - > {Item B}	

The usefulness of the rule can be approximated by an objective measure of 
interest such as confidence, conviction, or lift. Confidence for the rule is cal-
culated by the support scores of the individual items as given in Equation 6.1. 
Each frequent item set of n items can generate 2n – 2 rules. For example {News, 
Sports, Finance} can generate rules with the following confidence scores.

Rules and confidence scores

{News, Sports}->{Finance} – 0.33 / 0.33 = 1.0
{News, Finance}->{Sports} – 0.33 / 0.67 = 0.5
{Sports, Finance}->{News} – 0.33 / 0.33 = 1.0
{News}->{Sports, Finance} – 0.33 / 0.83 = 0.4
{Sports}->{News, Finance} – 0.33 / 0.33 = 1.0
{Finance}->{News, Sports} – 0.33 / 0.67 = 0.5

Since all the support scores have already been calculated in the item set genera-
tion step, there is no need for another set of computations for calculating con-
fidence. However, it is possible to prune potentially low confidence rules using 
the same Apriori method. For a given frequent item set {News, Finance, Sports}, 
if the rule {News, Finance} -> {Sports} is a low confidence rule, then we can 
conclude any rules within the subset of the antecedent will be a low confidence 
rule. Hence we can discard all the rules like {News}->{Sports, Finance} and 
{Finance} -> {News, Sports}, which are in the subsets of the antecedent of the 
rule. The reason is that all three rules have the same numerator in the confidence 
score calculation (Equation 6.1), which is 0.33. The denominator calculation 
depends on the support of the antecedent. Since the support of a subset is always 
greater or equal to the set, we can conclude all further rules within a subset of an 
item set in the premises will be a low confidence rule, and hence can be ignored.

All the rules passing a particular confidence threshold are considered for out-
put along with both support and confidence measures. These rules should 
be further evaluated for rational validity to determine if a useful relationship 
was uncovered, if there was an occurrence by chance, or if the rule confirms a 
known intuitive relationship.

6.3 � FP-GROWTH ALGORITHM
The Frequent Pattern (FP)-Growth algorithm provides an alternative way of 
calculating a frequent item set by compressing the transaction records using 
a special graph data structure called FP-Tree. FP-Tree can be thought of as a 
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transformation of the data set into graph format. Rather than the generate 
and test approach used in Apriori algorithm, FP-Growth first generates the 
FP-Tree and uses this compressed tree to generate the frequent item sets. The 
efficiency of the FP-Growth algorithm depends on how much compression can 
be achieved in generating the FP-Tree (Han, Pei, & Yin, 2000).

6.3.1 � Generating the FP-Tree
Consider the data set shown in Table 6.5 containing six transactions of four 
items—news, finance, sports, and entrainment. To visually represent this data 
set in a tree diagram (Figure 6.6), we need to transform the list of transactions 
to a tree map, preserving all the information and representing the frequent 
paths. Let’s build the FP-Tree for this data set step by step.

	 1.	� The first step is to sort all the items in each transaction in descending 
order of frequency (or support count). For example, News is the most 
frequent item and Sports is the least frequent item in the transaction, 
based on the data in Table 6.5. The third transaction of {Sports, News, 
Finance} has to be rearranged to {News, Finance, Sports}. This will 
help to simplify mapping frequent paths in later steps.

	 2.	� Once the items within a transaction are rearranged, we can now map 
the transaction to the FP-Tree. Starting with a null node, the first 
transaction {News, Finance} can be represented by Figure 6.5. The 
number within the parenthesis next to the item name is the number of 
transactions following the path.

	 3.	� Since the second transaction {News, Finance} is same as the first one, it 
follows the same path as first one. In this case, we can just increment the 
numbers.

	 4.	� The third transaction contains {News, Finance, Sports}. The tree 
is now extended to Sports and the item path count is incremented 
(Figure 6.6).

	 5.	� The fourth transaction only contains the {Sports} item. Since Sports is 
not preceded by News and Finance, a new path should be created from 
the null item and the item count should be noted. This node for Sports 

Table 6.5  Transactions List: Session and Items

Session Items

1 {News, Finance}
2 {News, Finance}
3 {News, Finance, Sports}
4 {Sports}
5 {News, Finance, Sports}

6 {News, Entertainment}
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is different from the Sports node next to Finance (the latter co-occurs 
with News and Finance). However, since both nodes indicate the same 
item, they should be linked by a dotted line.

	 6.	� This process is continued until all the transactions are scanned. All of 
the transaction records can be now represented by a compact FP-Tree 
(Figure 6.7).

The compression of the FP-Tree depends on how frequently a path occurs 
within a given transaction set. Since the key objective of association analy-
sis is to identify these common paths, the data sets we use from this analy-
sis contain many frequent paths. In the worst case, all transactions contain 
unique item set paths and there wouldn’t be any compression. In that  
case the rule generation itself would be less meaningful for association 
analysis.

Null

News (3)

Finance (3)

Sports (1)

FIGURE 6.6
FP-Tree: Transactions 1, 2, and 3

Null

News (1)

Finance (1)

FIGURE 6.5
FP-Tree: Transaction 1.
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6.3.2 � Frequent Item Set Generation
Once the transaction set is expressed by a compact FP-Tree, the most frequent item 
set can be generated from the FP-Tree effectively. To generate the frequent item set, 
the FP-Growth algorithm adopts a bottoms-up approach of generating all the item 
sets starting with the least frequent items. Since the structure of the tree is ordered 
by the support count, the least frequent items can be found in leaves of tree. In 
Figure 6.8, the least frequent items are {Entertainment} and {Sports}, because 
the support count is just one transaction. If {Entertainment} is a frequent item 
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FIGURE 6.7
FP-Tree: Transactions 1 to 6.
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FIGURE 6.8
Trimmed FP-Tree.



210 CHAPTER 6:  Association Analysis

because the support exceeds the threshold, the algorithm finds all the item sets 
ending with entertainment, like {Entertainment} and {News, Entertainment}, by 
following the path from the bottom up. Since the support counts are mapped to 
the nodes, calculating the support for {News, Entertainment} will be instant. If 
{Entertainment} is not frequent, the algorithm skips the item and goes with the 
next item, {Sports}, and finds all possible item sets ending with sports: {Sports}, 
{Finance, Sports}, {News, Sports}, {News, Finance, Sports}.

Finding the entire item set ending with a particular item number is actually 
made possible by generating a prefix path and conditional FP-Tree for an item, 
as shown in Figure 6.9. The prefix path of an item is a subtree with only paths 
that contain the item of interest. A conditional FP-Tree for an item, say{Sports}, 
is the similar to the FP-Tree, but with the {Sports} item removed. Based on the 
conditional FP-Tree, the algorithm repeats the process of finding leaf nodes. 
Since leaf nodes of the sports conditional tree coexists with {Sports}, the algo-
rithm finds the association with finance and generates {Finance, Sports}.

Rule generation in the FP-Growth algorithm is very similar to the Apriori 
algorithm. Since the intent is to find frequently occurring items, by defi-
nition, many of the transactions should have essentially the same path. 
Hence, in many practical applications the compaction ratio is very high. In 
those scenarios, the FP-Growth algorithm provides efficient results. Since 
the FP-Growth algorithm uses the graphs to map the relationship between 
frequent items, it has found applications beyond association analysis. It is 
now applied in research as a preprocessing phase for document clustering, 
text mining, and sentiment analysis (Akbar & Angryk, 2008). However, in 
spite of execution differences, both the FP-Growth and Apriori algorithms 
yield similar results. Rule generation from the frequent item sets is similar 
to the Apriori algorithm. Even though the concepts and explanation include 
analyzing graphs and subgraphs, FP-Growth algorithms can be easily ported 
to programming languages, particularly to SQL and PL/SQL programs on 
top of relational databases, where the transactions are usually stored (Shang 
et al., 2004).
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FIGURE 6.9
Conditional FP-Tree.
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6.3.3 � How to Implement

The retrieval of association rules from a data set is implemented through the 
FP-Growth algorithm in RapidMiner. Since the modeling parameters and the 
result for most of the association algorithms are same, we will focus on the 
FP-Growth algorithm to observe the inputs, process, and the result of an asso-
ciation analysis implementation.

Step 1: Data Preparation

The Association analysis process expects transactions to be in a particular format. 
The input grid should have binominal (true or false) data with items in the col-
umns and each transaction as a row. If the data set contains transaction IDs or ses-
sion IDs, they can either be ignored or tagged as a special attribute in RapidMiner. 
Data sets in any other format have to be converted to this transactional format 
using data transformation operators. In this example, we have used the data shown 
in Table 6.3, with a session ID on each row and content accessed in the columns, 
indicated by 1 and 0. This integer format has to be converted to a binomial format 
by a numerical to binominal operator. The output of Numerical to Binominal is then 
connected to the FP-Growth operator to generate frequent item sets. The data set 
and RapidMiner process for association analysis can be accessed from the compan-
ion site of the book at www.LearnPredictiveAnalytics.com. Figure 6.10 shows the 
RapidMiner process of Association analysis with FP Growth algorithm.

FIGURE 6.10
Data mining process for FP-Growth algorithm.

http://www.learnpredictiveanalytics.com/
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Step 2: Modeling Operator and Parameters

The FP-Growth operator in RapidMiner generates all the frequent item sets from 
the input data set meeting a certain parameter criterion. The modeling operator 
is available at Modeling > Association and Item Set Mining folder. This operator 
can work in two modes, one with a specified number of high support item sets 
(default) and the other with minimum support criteria. The following parame-
ters can be set in this operator there by affecting the behavior of the model.

	 n	� Min Support: Threshold for support measure. All the frequent item sets 
passing this threshold will be provided in the output

	 n	� Max Items: Maximum number of items in an item set. Specifying this 
parameter limits too many items in an item set.

	 n	� Must Contain: Regular expression to filter item sets to contain specified 
items. Use this option to filter out items.

	 n	� Find Minimum Number of Item Sets: This option allows the FP-Growth 
operator to lower the support threshold, if fewer item sets are generated 
with the given threshold. The support threshold is decreased by 20% in 
each retry.

	 n	� Min Number of Item Sets: Value of minimum number of item sets 
to be generated.

	 n	� Max number of Retries: Number of retries allowed in achieving 
minimum item sets

In this example, we are setting Min Support to 0.25. The result of the FP-Growth 
operator is the set of item sets generated, which can be viewed in the results 
page. The reporting options include filtering based on the number of items 
and sorting based on the support threshold. Figure 6.11 shows the output of 

FIGURE 6.11
Frequent item set output.
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Frequent item sets operator where all possible item sets with support higher 
than the threshold can be seen.

Step 3: Create Association Rules
The next step in association analysis is generation of the most interesting rules 
from the frequent item sets created from the FP-Growth operator. The Create 
Association Rules operator generate relevant rules from frequent item sets. The 
interest measure of the rule can be specified by providing the correct interest 
criterion based on the data set under investigation. The input of the Create 
Association Rules operator is frequent item sets of FP-Growth operator and the 
output generates all the association rules meeting the interest criterion. The 
following parameters govern the functionality of this operator:

	 n	� Criterion: Used to select the interest measure to filter the association 
rule. All other parameters change based on the criterion selection. 
Confidence, lift, and conviction are commonly used interest criterion.

	 n	� Min Criterion Value: Specifies the threshold. Rules not meeting the 
thresholds are discarded.

	 n	� The Gain theta and Laplace parameters are the values specified when 
using gain and Laplace for the interest measure.

In this example process, we are using confidence as the criterion and a confi-
dence value of 0.5. Figure 6.10 shows the completed RapidMiner process for 
association analysis. The process can be saved and executed.

Step 4: Interpreting the Results
The filtered association analysis rules extracted from the input transactions can be 
viewed in the results window (Figure 6.12). The listed association rules are in a 
table with columns including the premise and conclusion of the rule, as well as the 

FIGURE 6.12
Association rules output.
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(b)

Rule 1 (0.667 / 0.800)
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FIGURE 6.13
Association rules output (a) text view, (b) graph view.
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support, confidence, gain, lift, and conviction of the rule. The interactive control 
window on the left-hand side of the screen allows the users to filter the processed 
rules to contain the selected item and ther is a slide bar to increase the confidence 
or criterion threshold, thereby showing fewer rules.

The main purpose of the association analysis is to understand the relationship 
between items. Since the items take the role of both premise and conclusion, 
a visual representation of relationships between all the items, through a rule, 
can help to comprehend the analysis. Figure 6.13 shows the rules in text format 
and by interconnected graph format through the results window, for selected 
items. Using the default option, the items selected are connected with the rules 
by arrows. The incoming item to a rule is the premise of the rule and the out-
going item is the conclusion of the association rule.

CONCLUSION
Association rules analysis has gained popularity in the last two decades particularly 
in retail, online cross selling, recommendation engines, text analysis, document 
analysis, and web analysis. Typically, a commercial data mining software tool 
offers association analysis in its tool package. Though there may be a variation in 
how the algorithm is implemented in each commercial package, the framework of 
generating a frequent item set using a support threshold and generating rules from 
the item sets using an interest criterion is the same. Applications that involve very 
large amount of items and real-time decision making demand new approaches 
with efficient and scalable association analysis (Zaki, 2000). Association analysis 
is also one of the prevalent algorithms that is applied to information stored using 
big data technologies, data streams, and large databases (Tanbeer et al., 2008).
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CHAPTER 7

Clustering is the process of finding meaningful groups in data. In cluster-
ing, the objective is not to predict a target class variable, but to simply cap-
ture the possible natural groupings in the data. For example, customers of 
a company can be grouped based on the purchase behavior. In recent years, 
clustering has even found its use in political elections (Pearson & Cooper, 
2012). Prospective electoral voters can be clustered into different groups so 
that candidates can tailor messages to resonate within each group. Before 
we proceed, we should further clarify the difference between classification 
and clustering using a simple example. Categorizing a given voter as a soccer 
mom (a known user group) or not is a supervised learning task of classifica-
tion task. Segregating a population of electorates into different groups, based 
on similar demographics is an unsupervised learning task of clustering. The 
process of identifying whether a data point belongs to a particular known 
group is classification. The process of dividing data into meaningful groups 
is clustering.
In many cases one would not know ahead of what groups to look for and thus the 
identified groups might be difficult to explain. These identified groups are referred 
to as clusters. The data mining task of clustering can be used in two different 
classes of applications: to describe a given data set and as a preprocessing step for 
other predictive algorithms.

CLUSTERING TO DESCRIBE THE DATA
The most common application of clustering is to explore the data and find 
all possible meaningful groups in the data. Clustering a company’s cus-
tomer records and attributes can yield a few groups in such a way that 
customers within a group are more like each other than customers belong-
ing to a different group. Depending on the clustering technique used, the 
number of groups or clusters is either user defined or automatically deter-
mined by the algorithm. Since clustering is not about predicting the mem-
bership of a customer in a well-defined meaningful group (e.g., frequent 

Clustering
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high volume purchaser), we need to investigate carefully the similarities of 
customers within a group to make sense of the group as a whole. Some of 
the common applications of clustering to describe the underlying natural 
structure of the data are:

	 1.	 �Marketing: Finding the common groups of customers based on all past 
customer behaviors, potential customers’ attributes, and/or purchase 
patterns. This task is helpful to segment the customers, identify 
prototype customers (description of a typical customer of a group), and 
tailor a marketing message to the customers in a group.

	 2.	 �Document clustering: One of the common text mining task is to 
automatically group the documents (or text blobs) into groups of similar 
topics. Document clustering provides a way of identifying key topics, 
comprehend and summarize these clustered groups than reading through 
whole documents. Document clustering is used for routing customer 
support incidents, online content sites, forensic investigations, etc.

	 3.	 �Session grouping: In web analytics, clustering is helpful to understand 
clusters of clickstream patterns and discover different kinds of 
clickstream profiles. One clickstream profile may be that of customers 
who knows what they want and proceed straight to checkout. Another 
profile may be that of customers that research the products, read 
through customer reviews, and make a purchase during a later sessions. 
Clustering the web sessions by profile helps an ecommerce company to 
provide features fitting each customer profile.

CLUSTERING FOR PREPROCESSING
Since clustering processes consider all the attributes of the data set and “reduce” 
the information to a cluster, which is really another attribute (i.e. the ID of the 
cluster to which a record would belong to), clustering can be used as a data 
compression technique. The output of clustering is the cluster name for each 
record and can be used as an input variable for other predictive data min-
ing tasks. Hence, clustering can be employed as a preprocessing technique for 
other data mining processes. In general, clustering can be used for two types 
of preprocessing:

	 1.	 �Clustering to reduce dimensionality: In an n-dimensional data set  
(n number of attributes), the computational complexity is proportional 
to the number of dimensions or “n.” With clustering, n-dimensional 
attributes can be converted or reduced to one categorical attribute—
“Cluster ID”. This reduces the complexity, although there will be some 
loss of information because of the dimensionality reduction to one 
single attribute. Chapter 12 Feature Selection provides an in-depth look 
at feature selection techniques.
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	 2.	 �Clustering for object reduction: Let’s assume that the number of 
customers for a company is in the millions and the number of cluster 
groups is 100. For each of these 100 cluster groups, we can identify 
one “poster child” customer that represents the characteristics of all 
the customers in the cluster group. The poster child customer can be 
an actual customer or a fictional customer with typical characteristics 
of customers in the group. The prototype of a cluster is the most 
common representation of all the data objects and it may be a new 
object whose attribute values are the average values of all objects within 
the cluster for each attribute (the most frequently occurring value 
in the case of categorical attributes). Reducing millions of customer 
records to 100 prototype records provides an obvious benefit. For a 
few applications, instead of processing millions of records, we can just 
process the prototypes for further classification or regression tasks. This 
greatly reduces the record object count and can be used in algorithms 
like k-NN where computation complexity depends on the number of 
records.

7.1 � TYPES OF CLUSTERING TECHNIQUES
Regardless of the types of clustering applications, the data mining task of clus-
tering seeks to find the groupings in data, in such a way that data points within 
a cluster are more “similar” to each other than to data points in other clusters 
(Witten & Frank, 2005). One of the common ways of measuring similarity is 
the Euclidean distance measurement in n-dimensional space which is used in 
many clustering algorithms. In Figure 7.1 all data points in Cluster 2 are closer 
to other data points in Cluster 2 than other data points in Cluster 1.

Before we get into different ways to implement clustering, we need to define 
the different types of clusters. Based on a data point’s membership to identified 
groups, clusters can be:

	 n	 �Exclusive or strict partitioning clusters: Each data object belongs to 
one exclusive cluster, like the example shown in Figure 7.1. This is the 
most common type of cluster.

	 n	 �Overlapping clusters: The cluster groups are not exclusive and each 
data object may belong to more than one cluster. These are also known 
as multiview clusters. For example, customers of a company can be 
grouped in a high-profit customer cluster and high-volume customer 
cluster at the same time.

	 n	 �Hierarchical clusters: Each child cluster can be merged to form a 
parent cluster. For example, the most profitable customer cluster can be 
further divided into a long-term customer cluster and a cluster with new 
customers with high-value purchases.



220 CHAPTER 7:  Clustering

	 n	 �Fuzzy or probabilistic clusters: Each data point belongs to all 
cluster groups with varying degrees of membership from 0 to 1. For 
example, in a data set with clusters A, B, C, and D, a data point can be 
associated with all clusters with degree A = 0.5, B = 0.1, C = 0.4, and  
D = 0. Instead of a definite association of a data point with one 
cluster, fuzzy clustering associates a probability of membership to  
all the clusters.

Clustering techniques can also be classified based on the algorithmic approach 
used to find clusters in the data set. Each of these classes of clustering algo-
rithms differ based on what relationship they leverage between the data 
objects.

	 n	 �Prototype-based clustering: In prototype-based clustering, each 
cluster is represented by a central data object, also called a prototype. 
The prototype of each cluster is usually the center of the cluster, 
hence this clustering is also called centroid clustering or center-
based clustering. For example, in clustering customer segments, 

FIGURE 7.1
Example clustering of Iris data set without class labels.
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each customer cluster will have a central prototype customer and 
customers with similar properties are associated with the prototype 
customer of a cluster.

	 n	� Density clustering: In Figure 7.1, we can observe that clusters occupy 
the area where there are more data points per unit space and are 
separated by sparse space. A cluster can also be defined as a dense 
region where data objects are concentrated surrounded by a low-density 
area where data objects are sparse. Each dense area can be assigned a 
cluster and the low-density area can be discarded as noise. In this form 
of clustering not all data objects are clustered since noise objects are 
unassigned to any clusters.

	 n	� Hierarchical clustering: Hierarchical clustering is a process where a 
cluster hierarchy is created based on the distance between data points. 
The output of a hierarchal clustering is a dendrogam: a tree diagram 
that shows different clusters at any point of precision which is 
specified by the user. There are two approaches to create a hierarchy of 
clusters. A bottom-up approach is where each data point is considered 
a cluster, and the clusters are merged to finally form one massive 
cluster. The top-down approach is where the data set is considered one 
cluster and they are recursively divided into different subclusters until 
individual data objects are defined as separate clusters. Hierarchical 
clustering is useful when the data size is limited. A level of interactive 
feedback is required to cut the dendrogam tree at a given level of 
precision.

	 n	 �Model-based clustering: Model-based clustering gets its foundation 
from statistics and probability distribution models; this technique is 
also called distribution-based clustering. A cluster can be thought of as 
a grouping that has the data points belonging to the same probability 
distribution. Hence, each cluster can be represented by a distribution 
model (like Gaussian or Poisson), where the parameter of the 
distribution can be iteratively optimized between the cluster data and 
the model. With this approach, the entire data set can be represented 
by a mixture of distribution models. Mixture of Gaussians is one of 
the model-based clustering techniques used where a fixed number of 
distributions are initialized and parameters are optimized to fit the 
cluster data.

In the rest of the chapter, we will discuss common implementations of cluster-
ing. We will start with k-means clustering, which is a kind of prototype cluster-
ing technique. We will follow this with the Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) which provides a view into density cluster-
ing, and we finish off with a novel approach called self-organizing maps (SOM).
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All business entities have customers and record most 
of the interaction with the customers, including but not 
limited to monetary transactions, customer service, 
customer location and details, online interactions, 
product usage, and warranty and service information. 
Let’s take the telecommunication industry as an 
example. Telecommunications companies have now 
evolved to provide multiple services to different types 
of customers by packaging products like landlines, 
wireless voice, Internet Service Providers, data 
communications, corporate backbones, entertainment 
content, home security, etc. To better understand 
customers, whose numbers often range in the 
millions, it is necessary to combine multiple data 
sets about the customers and their interactions 
with each product. The vastness of the number and 
variety of attributes in the data set provides both an 
opportunity and challenge to better know customers 
(Berry & Linoff, 2000). One logical way to understand 
the customer beyond straightforward classifications 
like customer type (residential, corporate, government, 
etc) or revenue volume (high-, medium-, and low-
revenue customers), is to segment the customer 
based on usage patterns, demographics, geography, 
and behavior patterns for product usage.

For a customer segmentation task, the data need 
to be prepared in such a way that each record (row) 
is associated with each customer and the columns 

contain all the attributes about the customer, including 
demographics, address, products used, revenue 
details, usage details of the product, call volume, 
type of calls, call duration, time of the call, etc. Table 
7.1 shows an example structure of a denormalized 
customer data set. Preparing this data set is going to 
be time-consuming task. One of the obvious methods 
of segmentation is stratifying based on any of the 
existing attributes. For example, we can segment 
based on a customer’s geographical location.

A clustering algorithm consumes this data and groups 
the customers with similar patterns into clusters based 
on all the attributes. Based on the data, clustering could 
be based on a combination of call usage, data patterns, 
and monthly bills. The resulting clusters could be a 
group of customers who have low data usage but with 
high bills at a location where there is weak cellular 
coverage, which may indicate dissatisfied customers.

The clustering algorithm doesn’t explicitly provide the 
reason for clustering and doesn’t intuitively label the 
cluster groups. While clustering can be performed using 
a large number of attributes, it is up to the data mining 
practitioner to carefully select the attributes that will 
be relevant for clustering. Automated feature selection 
methods (Chapter 12 Feature Selection) can reduce 
the dimensions for a clustering exercise. Clustering 
could be iteratively developed further by selecting or 
ignoring other attributes in the customer data set.

Table 7.1  Data Set for Customer Segmentation

Customer ID Location Demographics Call Usage Data Usage
Monthly 
Bill

01 San Jose, CA Male 1400 200 MB $75.23
02 Miami, FL Female 2103 5,000 MB $125.78
03 Los Angeles, CA Male 292 2,000 MB $89.90

04 San Jose, CA Female 50 40 MB $59.34

SEGMENTING CUSTOMER RECORDS
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7.2 � k-MEANS CLUSTERING
k-means clustering is a prototype-based clustering method where the data set is 
divided into k clusters. k-means clustering is one of the simplest and most com-
monly used clustering algorithms. In this technique, the user specifies the number 
of clusters (k) that need to be grouped in the data set. The objective of k-means 
clustering is to find a prototype data point for each cluster; all the data points are 
then assigned to the nearest prototype, which then forms a cluster. The prototype 
is called as the centroid, the center of the cluster. The center of the cluster can be the 
mean of all data objects in the cluster, as in k-means, or the most represented data 
object, as in k-medoid clustering. The cluster centroid or mean data object does 
not have to be a real data point in the data set and can be an imaginary data point 
that represents the characteristics of all data points within the cluster.

The k-means clustering algorithm is based on the works of Stuart Lloyd and E.W. 
Forgy (Lloyd, 1982) and is sometimes referred to as the Lloyd-Forgy algorithm or 
Lloyd’s algorithm. Visually, the k-means algorithm divides the data space into k 
partitions or boundaries, where the centroid in each partition is the prototype of 
the clusters. The data objects inside a partition belong to the cluster. These parti-
tions are also called Voronoi partitions, and each prototype is a seed in a Voronoi 
partition. A Voronoi partition is a process of segmenting a space into regions, 
around a set of points called seeds. All other points are then associated to the 
nearest seed and the points associated with the seed form a unique partition. 
Figure 7.2 shows a sample Voronoi partition around seeds marked as black dots.

FIGURE 7.2
Voronoi partition. (“Euclidean Voronoi Diagram” by Raincomplex – personal work. Licensed under Creative 
Commons Zero, Public Domain Dedication via Wikimedia Commons.1)

1http://commons.wikimedia.org/wiki/File:Euclidean_Voronoi_Diagram.png#mediaviewer/
File:Euclidean_Voronoi_Diagram.png
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k-means clustering creates k partitions in n-dimensional space, where n is the 
number of attributes in data sets. To partition the data set we would need to 
define a proximity measure. The most commonly used measure for a numeric 
attribute is the Euclidean distance. Figure 7.3 illustrates the clustering of the 
Iris data set with only the petal length and petal width attributes. This Iris data 
set is two dimensional, with numeric attributes and k specified as 3. The out-
come of k-means clustering provides a clear partition space for Cluster 1 and a 
narrow space for the other two clusters, Cluster 2 and Cluster 3.

7.2.1 � How it Works: Concepts
The logic of finding k-clusters with a given data set is rather simple and always 
converges to a solution. However, the final result in most cases will be locally 
optimal where the solution will not converge to the global best solution. The 
process of k-means clustering is very similar to Voronoi iteration, where the 
objective is to divide a space into cells around points. The difference is Voronoi 
iteration partitions space, whereas k-means clustering partitions data points 
in data space. Let’s take the example of a two-dimensional data set (Figure 
7.4) and walk through the step-by-step process of finding three clusters (Tan, 
Michael, & Kumar, 2005).

Step 1: Initiate Centroids
The first step in a k-means algorithm is to initiate k random centroids. The 
number of clusters k should be specified by the user. In this case we initiate 
three centroids in a given data space. In Figure 7.5, each initial centroid is given 
a shape (with a circle to differentiate centroids from other data points) so that 
data points assigned to a centroid can be indicated by same shape.

Step 2: Assign Data Points
Once centroids have been initiated, all the data points are now assigned to the 
nearest centroid to form a cluster. In this context the “nearest” is calculated 
by a proximity measure. Euclidean distance measurement is the most com-
mon proximity measure, though other measures like the Manhattan measure 
and Jaccard coefficient can be used. The Euclidean distance between two data 
points X (x1, x2,…xn) and C (c1, c2,…cn) with n attributes is given by

	Distance d =
√
(x1 − c1)

2 + (x2 − c2)
2 + ...+ (xn − cn)

2

	 (7.1)

All the data points associated to a centroid now have the same shape as 
their corresponding centroid as shown in Figure 7.6. This step also leads 
to partitioning of data space into Voronoi partitions, with lines shown as 
boundaries.
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FIGURE 7.3
Prototype-based clustering and boundaries.

FIGURE 7.4
Data set with two dimensions.
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Step 3: Calculate New Centroids
For each cluster, we can now calculate a new centroid, which is also the pro-
totype of each cluster group. This new centroid is the most representative 
data point of all data points in the cluster. Mathematically, this step can be 
expressed as minimizing the sum of squared errors (SSE) of all data points in 
a cluster to the centroid of the cluster. The overall objective of the step is to 
minimize the sum of squared errors of individual clusters. The SSE of a cluster 
can be calculated by Equation 7.2.

	 � (7.2)

where Ci is the ith cluster, j are the data points in a given cluster, μi is the cen-
troid for ith cluster, and xj is a specific data object. The centroid with minimal 

FIGURE 7.5
Initial random centroids.

FIGURE 7.6
Assignment of data points to nearest centroids.
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SSE for the given cluster i is the new mean of the cluster. The mean of the clus-
ter can be calculated by

	
μi =

1

ji

∑
x ∈ ci

X
	 (7.3)

where X is the data object vector (x1, x2,… xn). In the case of k-means cluster-
ing, the new centroid will be the mean of all the data points k-medoid cluster-
ing is a variation of k-means clustering, where the median is calculated instead 
of mean. Figure 7.7 shows the location of the new centroids.

Step 4: Repeat Assignment and Calculate New Centroids
Once the new centroids have been identified, assigning data points to the near-
est centroid is repeated until all the data points are reassigned to new centroids. 
In Figure 7.8, note the change in assignment of two data points that belonged 
to different clusters in the previous step.

Step 5: Termination
Step 3, calculating new centroids, and step 4, assigning data points to new 
centroids, are iterative until no further change in assignment of data points 
happens or, in other words, no significant change in centroids are noted. The 
final centroids are declared the prototype data objects or vectors and they are 
used to describe the whole clustering model. Each data point in the data set is 
now tied with a new clustering ID attribute that identifies the cluster.

Special Cases
Even though k-means clustering is simple and easy to implement, one of 
the key drawbacks of k-means clustering is the algorithm seeks to find a local 
optimum, which may not yield globally optimal clustering. In this approach, 
the algorithm starts with an initial configuration (centroids) and continuously 

FIGURE 7.7
New centroids.
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improves to find the best solution possible for that initial configuration. Since 
the solution is optimal to the initial configuration (locally optimal), there 
might be a better optimal solution if the initial configuration changes. The 
locally optimal solution may not be the most optimal solution (globally opti-
mal) for the given clustering problem. Hence, the success of a k-means algo-
rithm very much depends on the initiation of centroids. This limitation can be 
addressed by having multiple random initiations; in each run we can measure 
the cohesiveness of the clusters by a performance criterion. The clustering run 
with the best performance can be chosen as the final run. Evaluation of clus-
tering is discussed in next section. Following are key issues to be considered in 
k-means clustering:

	 n	� Initiation: The final clustering grouping depends on the random 
initiator and the nature of the data set. When random initiation is 
used, we can run the entire clustering process (also called “runs”) with 
a different set of random initiators and find the clustering process that 
has minimal total SSE. Another technique is hierarchical clustering, 
where each cluster is in turn split into multiple clusters and thereby 
minimal SSE is achieved. Hierarchical clustering is further divided 
into agglomerative or bottom-up clustering and divisive or top-down 
clustering, depending on how the clustering is initiated. Agglomerative 
clustering starts with each data point as an individual cluster and 
proceeds to combine data points into clusters. Divisive clustering starts 
with the whole data set as one big cluster and proceeds to split that into 
multiple clusters.

	 n	� Empty clusters: One of the possibilities in k-means clustering is the 
formation of empty clusters in which no data objects are associated. 
If empty clusters are formed, a new centroid can be introduced in 

FIGURE 7.8
Assignment of data points to new centroids.
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the cluster that has the highest SSE, thereby splitting the cluster that 
contributes to the highest SSE or selecting a new centroid that is at the 
farthest point away from any other centroid.

	 n	� Outliers: Since SSE is used as an objective function, k-means clustering 
is susceptible to outliers; they drift the centroid away from the 
representative data points in a cluster. Hence the prototype is no longer 
the best representative of the clusters it represents. While outliers can be 
eliminated by preprocessing techniques, in some applications finding 
outliers or a group of outliers is the objective of clustering, similar to 
identifying fraudulent transactions.

	 n	� Postprocessing: Since k-means clustering seeks to be locally optimal, 
we can introduce a few postprocessing techniques to force a new 
solution that has less SSE. We always can increase the number of 
clusters, k, and reduce SSE. But, this technique can start overfitting the 
data set and yields less useful information. There are a few approaches 
that can be deployed, such as bisecting the cluster that has highest SSE 
and merging two clusters into one even if SSE increases slightly.

Evaluation of Clusters
Evaluation of k-means clustering is different from regression and classification 
algorithms because in clustering there are no known external labels for com-
parison. We will have to develop the evaluation parameter from the very data 
set that is evaluated. This is called unsupervised or internal evaluation. Evalu-
ation of clustering can be as simple as computing total SSE. Good models will 
have low SSE within the cluster and low overall SSE among all clusters. SSE can 
also be referred to as the average within-cluster distance and can be calculated 
for each cluster and then averaged for all the clusters.

Another commonly used evaluation measure is the Davies-Bouldin index 
(Davies & Bouldin, 1979). The Davies-Bouldin index is a measure of unique-
ness of the clusters and takes into consideration both cohesiveness of the clus-
ter (distance between the data points and center of the cluster) and separation 
between the clusters. It is the function of the ratio of within cluster separa-
tion to the separation between the clusters. The lower the value of the Davies- 
Bouldin index, the better the clustering. However, both SSE and the Davies-Boul-
din index have the limitation of not guaranteeing better clustering when they 
have lower scores.

7.2.2 � How to Implement
k-means clustering implementation in RapidMiner is simple and straightforward 
with one operator for modeling and one for unsupervised evaluation. In the 
modeling step, the parameter for the number of clusters, k, is specified as desired. 
The output model is a list of centroids for each cluster and a new attribute is 
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attached to the original input data set with the cluster ID. The cluster label is 
appended to the original data set for each data point and can be visually eval-
uated after the clustering. A model evaluation step is required to calculate the 
average cluster distance and Davies-Bouldin index.

For this implementation, we are using the Iris data set with four attributes and 
150 data objects (Fisher, 1936). Even though a class label is not needed for clus-
tering, we choose to keep it for later explanation to see if identified clusters from 
an unlabeled data set are similar to natural clusters of species in the given data set.

Step 1: Data Preparation
k-means clustering accepts both numeric and polynominal data types; how-
ever, the distance measures are more effective with numeric data types. The 
number of attributes increases the dimension space for clustering. In this 
example we limit the number of attributes to two by selecting petal width 
(a3) and petal length (a4) using the Select attribute operator as shown in  
Figure 7.9. It is easy to visualize the mechanics of k-means algorithm by look-
ing at two-dimensional plots for clustering. In practical implementations, clus-
tering data sets will have more attributes.

FIGURE 7.9
Data mining process for k-means clustering.
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Step 2: Clustering Operator and Parameters
The k-means modeling operator is available in Modeling > Clustering and Seg-
mentation folder of RapidMiner. The following parameters can be configured 
in the model operator:

	 n	� k: k is the desired number of clusters.
	 n	� Add cluster as attribute: Append cluster labels (IDs) into the original 

data set. Turning on this option is recommended for later analysis.
	 n	� Max runs: Since the effectiveness of k-means clustering is dependent on 

random initial centroids, multiple runs are required to select the clustering 
with the lowest SSE. The number of such runs can be specified here.

	 n	� Measure type: The proximity measure can be specified in this parameter. 
The default and most common measurement is Euclidean distance (L2). 
Other options here are Manhattan distance (L1), Jaccard coefficient, 
and cosine similarity for document data. Please refer to Chapter 4 
Classification section k-NN for description on distance measures.

	 n	� Max optimization steps: This parameter specifies the number of iterations 
of assigning data objects to centroids and calculating new centroids.

The output of the modeling step includes the cluster model with k centroid 
data objects and the initial data set appended with cluster labels. Cluster labels 
are named generically such as cluster_0, cluster_1,…, cluster_k–1.

Step 3: Evaluation
Since the attributes used in the data set are numeric, we need to evaluate the 
effectiveness of clustering groups using SSE and the Davies-Bouldin index. 
In RapidMiner, the Cluster Distance Performance operator under Evaluation >  
Clustering is available for performance evaluation of cluster groups. Perfor-
mance operator needs accepts both inputs from the modeling step: cluster cen-
troid vector (model) and the labeled data set. The two measurement outputs 
of the evaluation are average cluster distance and the Davies-Bouldin index.

Step 4: Execution and Interpretation
After the outputs from the performance operator have been connected to the 
result ports, the data mining process can be executed. The following outputs 
can be observed from results window:

	 n	� Cluster Model (Clustering): The model output contains the centroid 
for each of the k clusters, along with their attribute values. As shown 
in Figure 7.10, in the text view and folder view sections, we can see 
all the data objects associated with the each cluster. The centroid plot 
view provides the parallel chart view (Chapter 3 Data Exploration) of 
centroids. A large separation between centroids is desirable, because 
well-separated clusters divide the data set cleanly.
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	 n	� Labeled example set: The appended data set has some of the most 
important information on clustering. The generic Iris data set of 150 
observations is clustered in three groups. The cluster value is appended 
as a new special polynominal attribute and takes a generic label format. 
In the scatterplot view of this output data set, we can configure the x- 
and y-axes to be attributes of original data set, petal length and petal 
width. The Color Column can be configured for cluster labels. In the 
plot in Figure 7.11, we notice how the algorithm identified clusters. 
We can compare this output against the original label (Iris species) by 
swapping the Color Column to the species label. Here we can observe 
that only five data points in the border of versicolor and virginica are 
mis-clustered! The k-means clustering process identified the different 
species in the data set almost exactly.

	 n	� Performance vector: The output of the performance evaluation 
includes the average distance measured and the Davies-Bouldin index 
(Figure 7.12). This step can be used to compare multiple clustering 
processes with different parameters. In advanced implementations, it is 
possible to determine the value of k based on the clustering runs with 
the best performance vectors. Amongst multiple clustering runs, the low 
average-within-centroid distance and low Davies-Bouldin index yields 
better clusters, because they indicate the cohesiveness of the cluster.

The k-means clustering algorithm is simple, easy to implement, and easy to 
interpret. Although the algorithm can effectively handle an n-dimensional 
data set, the operation will be expensive with a higher number of iterations 

FIGURE 7.10
k-means clustering centroids output.
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and runs. One of the key limitations of k-means is that it relies on the user to 
assign the value of k (Berry & Linoff, 2000). The number of clusters in the data 
set will be unknown to begin with and an arbitrary number can limit the abil-
ity to find the right number of natural clusters in the data set. There are a vari-
ety of methods to estimate the right number for k, ranging from the Bayesian 
Information Criterion (BIC) to hierarchical methods that increases the value of 

FIGURE 7.11
k-means clustering visual output.

FIGURE 7.12
Performance measures of k-means clustering.
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k until the data points assigned to the cluster are Gaussian (Hamerly & Elkan, 
2003). For a start, we recommend a value of k in the low single digits and 
increasing it until it fits. Clustering using density methods will help provide an 
idea into the number of clusters and could be used as a value of k in k-means 
clustering.

Since the centroid prototype approach is used, k-means tends to find glob-
ular clusters in the data set. However, natural clusters can be of all shapes 
and sizes. The presence of outliers possesses a challenge in the modeling 
of k-means clustering. The simplicity of the k-means clustering technique 
makes it a great choice for quick evaluation of globular clusters and as a 
preprocessing technique for predictive modeling and for dimensionality 
reduction.

7.3 � DBSCAN CLUSTERING
A cluster can also be defined as an area of high concentration (or density) 
of data objects surrounded by areas of low concentration (or density) of 
data objects. A density-clustering algorithm identifies clusters in the data 
based on measurement of the density distribution in n-dimensional space. 
Unlike centroid methods, specifying the number of the cluster parame-
ter (k) is not necessary for density-based algorithms. Thus density-based 
clustering can serve as an important data exploration technique. DBSCAN 
(Density-Based Spatial Clustering of Applications with Noise) is one of the 
most commonly used density-clustering algorithms (Ester et al.,1996). To 
understand how the algorithm works, we need to first define the concept of 
density in a data space.

Density can be defined as the number of data points in a unit n-dimen-
sional space. The number of dimensions n is the number of attributes in a 
data set. To simplify the visualization and to further understand how the 
model works, let’s consider a two-dimensional space or a data set with two 
numeric attributes. From looking at the data set represented in Figure 7.13, 
we can visually conclude that density in the top-left section is higher than 
density in top-right, bottom-left, and bottom-right sections. Technically, 
density relates to the number of points in unit space, in this case a quad-
rant. Wherever there is high-density space amongst relatively low-density 
spaces, there is a cluster.

We can also measure density within a circular space around a point as in Fig-
ure 7.14. The number of points within a circular space with radius ε (epsi-
lon) around a data point A is six. This measure is called center-based density 
since the space considered is globular with the center being the point that is 
considered.
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7.3.1 � How it Works
The DBSCAN algorithm creates clusters by identifying high-density and 
low-density space within the data set. Similar to k-means clustering, it is pre-
ferred that the attributes are numeric because distance calculation is still used. 
We can reduce the algorithm to three steps: defining threshold density, classifi-
cation of data points, and clustering (Tan, Michael, & Kumar, 2005).

FIGURE 7.13
Data set with two attributes.

ε

FIGURE 7.14
Density of a data point within radius ε.
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Step 1: Defining Epsilon and MinPoints
The DBSCAN algorithm starts with calculation of a density for all data points 
in a data set, with a given fixed radius ε (epsilon). To determine whether a 
neighborhood is high density or low density, we will have to define a threshold 
of data points (MinPoints) above which the neighborhood is considered high 
density. In Figure 7.14, the number of data points inside the space is defined 
by radius ε. If MinPoints is defined as 5, the space ε surrounding data point 
A is considered a high-density region. Both ε and MinPoints are user-defined 
parameters and can be altered for a data set.

Step 2: Classification of Data Points
In a data set, with a given ε and MinPoints, we can classify all data points into 
three buckets (Figure 7.15):

	 n	� Core points: All the data points inside the high-density region of at 
least one data point are considered a core point. A high-density region 
is a space where there are at least MinPoints data points within a radius 
of ε for any data points.

	 n	� Border point: Border points sit on the circumference of radius ε from 
a data point. A border point is the boundary between high-density and 
low-density space. Border points are counted within the high-density 
space calculation.

	 n	� Noise point: Any point that is neither a core point nor border point is 
called a noise point. They form a low-density region around the high-
density region.

ε

ε

FIGURE 7.15
Core, border, and density points.
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Step 3: Clustering
Once all data points in the data set are classified into density points, clustering 
is a straightforward task. Groups of core points form distinct clusters. If two 
core points are within ε of each other, then both core points are within the 
same cluster. All these clustered core points form a cluster, which is surrounded 
by low-density noise points. All noise points form low-density regions around 
the high-density cluster, and noise points are not classified in any cluster. Since 
DBSCAN is a partial clustering algorithm, a few data points are left unlabeled 
or associated to a default noise cluster.

Optimizing Parameters
One of the key advantages in using a density algorithm is that there is no need 
for specifying the number of clusters (k). Clusters are automatically found in 
the data set. However, there is an issue of selecting the distance parameter ε 
and a minimum threshold (MinPoints) to identify the dense region. One of 
the techniques used to estimate optimal parameters for the DBSCAN cluster-
ing algorithm relates to the k-nearest neighbor algorithm. We can estimate 
the initial values of the parameter by building a k-distribution graph. For a 
user-specified value of k (say, four data points), we can calculate the distance 
of the k-th nearest neighbor for a data point. If the data point is a core point 
in a high-density region, then the distance of the k-th nearest neighbor will be 
smaller. For a noise point, the distance will be larger. Similarly, we can calculate 
the k-distance for all data points in a data set. A k-distance distribution graph 
can be built by arranging all the k-distance values of individual data points 
in descending order, as shown in Figure 7.16. This arrangement is similar to 
Pareto charts. Points on the right-hand side of the chart will belong to data 
points inside a cluster, because the distance is smaller. In most data sets, the 
value of k-distance sharply rises after a particular value. The distance at which 
the chart rises will be the optimal value ε (epsilon) and the value of k can be 
used for MinPoints.

Special Cases: Varying Densities
The DBSCAN algorithm partitions data based on a certain threshold density. 
This approach creates an issue when a data set contains areas of varying data 
density. The data set in Figure 7.17 has four distinct regions numbered from 1 
to 4. Region 1 is the high-density area A, regions 2 and 4 are of medium density 
B, and between them is region 3, which has very low density C. If the density 
threshold parameters are tuned in such a way to partition and identify region 
1, then region 2 and 4 (with density B) will be considered noise, along with 
region 3. Even though region 4 with density B is next to a very-low-density area 
and clearly identifiable visually, the DBSCAN algorithm will classify regions 2 
through 4 as noise. The k-means clustering algorithm is better at partitioning 
data sets with varying densities.
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7.3.2 � How to Implement
The implementation of the DBSCAN algorithm is supported in RapidMiner 
through the DBSCAN modeling operator. The DBSCAN operator accepts 
numeric and polynominal data set with provisions for user-specified ε (epsilon) 
and MinPoints parameters. Here are the implementation steps.

Step 1: Data Preparation
As with the k-means section, we will limit the number of attributes in the data 
set to A3 and A4 (petal length and petal width) using the Select Attribute oper-
ator, so that we can visualize the cluster and better understand the clustering 
process.
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FIGURE 7.16
k-distribution chart for Iris data set with k = 4.

FIGURE 7.17
Data set with varying densities.
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Step 2: Clustering Operator and Parameters
The modeling operator is available in the Modeling > Clustering and Segmen-
tation folder, and is labeled DBSCAN. The ollowing parameters can be config-
ured in the model operator:

	 n	� Epsilon (ε): Size of the high-density neighborhood. The default value is 1.
	 n	� MinPoints: Minimum number of data objects within the epsilon 

neighborhood to qualify as a cluster.
	 n	� Distance measure: The proximity measure can be specified in this 

parameter. The default and most common measurement is Euclidean 
distance. Other options here are Manhattan distance, Jaccard coefficient, 
and cosine similarity for document data. Please refer to Figure 4.32 for a 
summary of different distance measures.

	 n	� Add cluster as attributes: To append cluster labels into the original data 
set. Turing on this option is recommended for later analysis.

Step 3: Evaluation (Optimal)
Similar to k-means clustering implementation, we can evaluate the effectiveness of 
clustering groups using average within cluster distance. In RapidMiner, the Cluster 
Density Performance operator under Evaluation > Clustering is available for per-
formance evaluation of cluster groups generated by Density algorithms. The clus-
tering model and labeled data set is connected to performance operator for cluster 
evaluation. Additionally, to aid the calculation, performance operator expects Sim-
ilarity Measure object. A similarity measure vector is a distance measure of every 
example data object with the other data object. The similarity measure can be 
calculated by using Data to Similarity Operator on the example data set.

Step 4: Execution and Interpretation
After the outputs from the performance operator have been connected to the 
result ports, as shown in Figure 7.18, the model can be executed. The following 
result output can be observed.

	 1.	� Model: The cluster model output contains information on the number 
or clusters found in the data set (Cluster 1, Cluster 2, …) and data 
objects identified as noise points (Cluster 0). If no noise points are 
found, then Cluster 0 is an empty cluster. As shown in Figure 7.19, 
the Folder view and Graph view from the output window provide the 
visualization of data points classified under different clusters.

	 2.	� Clustered example set: The example set now has a clustering label that 
can be used for further analysis and visualization. In the scatterplot 
view of this data set (Figure 7.20), we can configure the x- and y-axes to 
be attributes of the original data set, petal length and petal width. The 
Color Column can be configured to be the new cluster label. In the plot, 
we notice how the algorithm found two clusters within the example set. 
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FIGURE 7.19
Density clustering model output.

FIGURE 7.18
Data mining process with density clustering.
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The setosa species data objects have clear high-density areas but there is 
a density bridge between the verisicolor and virginica species data points. 
There is no clear low-density area to partition these two species of data 
points. Hence verisicolor and virginica natural clusters are combined to 
one artificial predicted cluster. The epsilon and MinPoints parameters 
can be adjusted to find different results for the clustering.

	 3.	� Performance vector: The performance vector window shows average 
distance within each cluster and average of all clusters. The average 
distance is the distance between all the data points within the cluster 
divided by number of data points. These measures can be used to 
compare the performance of multiple model runs.

7.3.3 � Conclusion
The main attraction of using DBSCAN clustering is that we do not have to specify 
the value of k, the number of clusters to be identified. In many practical appli-
cations, the number of clusters to be discovered will be unknown, like finding 
unique customers or electoral segments. DBSCAN uses variations in the density 
of the data distribution to find the concentration of structures in data. These 
clusters can be of any shape and they are not confined to globular structures as 

FIGURE 7.20
Density clustering visual output.
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in the k-means approach. But the density algorithms run into the risk of finding 
bridges between two natural clusters and merging them into one cluster.

Since the density clustering technique yields partial clustering, DBSCAN 
ignores noise and outlier data points and they are not clustered in final results. 
The inability to identify varying densities within a data set is one of the major 
limitations of DBSCAN clustering technique. Centroid methods are more suc-
cessful at finding varying density patterns in the data set. A data set with a 
high number of attributes will have processing challenges with density clus-
tering methods. Given the complementary pros and cons of the k-means and 
DBSCAN methods, it is advisable to cluster the data set by both methods and 
understand the patterns of both result sets.

7.4 � SELF-ORGANIZING MAPS
A self-organizing map (SOM) is a powerful visual clustering technique that 
evolved from the combination of neural networks and prototype-based cluster-
ing. A SOM is a form of neural network where the output is an organized visual 
matrix, usually a two-dimensional grid with rows and columns. The objective 
of this neural network is to transfer all input data objects with n attributes  
(n dimensions) to the output lattice in such a way that objects next to each 
other are closely related to each other. Two example SOM layouts are provided in 
Figure 7.21. This two-dimensional matrix becomes an exploration tool in iden-
tifying the clusters of objects related to each other by visual examination. A key 

FIGURE 7.21
(a) SOM of countries by GDP data using a (a) hexagonal grid and (b) rectangular lattice.
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distinction in this neural network is the absence of an output target function 
to optimize or predict, hence it is an unsupervised learning algorithm. SOMs 
effectively arrange the data points in a lower dimensional space, thereby aids 
visualizing high-dimensional data through a low-dimensional space.

SOMs are relevant to clustering because the most common SOM output is a 
two-dimensional grid with data objects placed next to each other based on 
their similarity to one another. Objects related to each other are placed in close 
proximity. SOMs differ from other clustering techniques because there is no 
explicit clustering labels assigned to data objects. Data objects are arranged 
based on their attribute proximity and the task of clustering is left to visual 
analysis of the user. Hence, SOM is used as a visual clustering and data explora-
tion technique (Germano, 1999).

Self-organizing maps were first proposed by Teuvo Kohonen (Kohonen, 1982) 
and hence this technique is also known as Kohonen networks; it is some-
times also referred to by a more specific name, self-organizing feature maps. 
SOM methodology is used to project data objects from data space, mostly in n 
dimensions, to grid space, usually resulting in two dimensions. Though other 
output formats are possible, most common output format for SOMs are (a) 
hexagonal lattice or a (b) rectangular grid as shown in Figure 7.21. Each data 
point from the data set occupies a cell or a node in the output lattice, with 
arrangement constraints depending on the similarity of data points. Each cell 
in the SOM grid corresponds to a group of data points, called a neuron. In a 
hexagonal grid, each neuron has six neighbors and a rectangular lattice has 
four neighbors.

SOMs are commonly used in comparing data points with a large number of 
numeric attributes. The objective of this kind of analysis is to compare the 
relative features of data objects in a simple two-dimensional setting where 
the placement of objects is related to each other. In Figure 7.21a, the SOM 
compares relative GDP data from different countries where countries with 
similar GDP profiles are placed either in same cells or next to each other. 
All similar countries around a particular cell can be considered a grouping. 
Although the individual data objects (countries) do not have a cluster mem-
bership, the placement of objects together aides in visual data analysis. This 
application is also called competitive self-organizing maps.

7.4.1 � How it Works: Concepts
The algorithm for a SOM is similar to centroid-based clustering but with a 
neural network foundation. Since a SOM is essentially a neural network, the 
model accepts only numerical attributes. However, there is no target variable 
in SOM because it is an unsupervised learning model. The objective of the 
algorithm is to find a set of centroids (neurons) to represent the cluster but 
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with topological constraints. The topology refers to an arrangement of cen-
troids in the output grid. All the data objects from the data set are assigned 
to each centroid. Centroids closer to each other in the grid are more closely 
“related” to each other than to centroids further away in the grid. A SOM 
converts numbers from the data space to a grid space with additional inter-to-
pology relationships.

Step 1: Topology Specification
The first step for a SOM is specifying the topology of the output. Even though 
multidimensional output is possible, two-dimensional rows and columns with 
either a rectangular lattice or hexagonal lattice are commonly used in SOMs 
to aid the visual discovery of clustering. One advantage in using a hexagonal 
lattice is that each node or centroid can have six neighbors, two more than in 
a rectangular lattice. Hence, in a hexagonal lattice, the association of a data 
point with another data point can be more precise than for a rectangular grid. 
The number of centroids can be specified by providing the number of rows and 
columns in the grid. The number of centroids is the product of the number of 
rows and columns in the grid. Figure 7.22 shows the hexagonal lattice SOM.

Step 2: Initialize Centroids
A SOM starts the process by initializing the centroids. The initial centroids are 
values of random data objects from the data set. This is similar to initializing 
centroids in k-means clustering.

Step 3: Assignment of Data Objects
After centroids are selected and placed on the grid in the intersection of rows 
and columns, data objects are selected one by one and assigned to the nearest 
centroid. The nearest centroid can be calculated using a distance function like 
Euclidean distance for numeric data or a cosine measure for document or binary 
data. Section 4.3.1 provides a summary of distance and similarity measures.

Step 4: Centroid Update
The centroid update is the most significant and distinct step in the SOM algo-
rithm and is repeated for every data object. The centroid update has two related 
substeps.

The first substep is to update the closest centroid. The objective of the method 
is to update the data values of the nearest centroid of the data object, propor-
tional to the difference between the centroid and the data object. This is similar 
to updating weights in the back propagation algorithm of neural networks. 
In the neural network section of Chapter 4 Classification, we discussed how 
the weights of neurons are updated based on the error difference between the 
predicted and actual value. Similarly, in the context of a SOM, the values of 
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centroids are updated. In fact, centroids are considered neurons in a SOM. 
Through this update, the closest centroid moves closer to the data object in the 
data space.

The centroid update step is repeated for number of iterations, usually in the 
thousands. Let’s denote t as the tth iteration of the update where we pick the 
data point d(t). Let w1, w2, w3, …, wk represent all the centroids in the grid 
space. Figure 7.22 shows the lattice with centroid weight. Let r and c be the 
number of rows and columns in the grid. Then k will be equal to r * c. Let wi be 
the nearest centroid for data object d(t). During iteration t, the nearest centroid 
wi is updated by Equation 7.4.

	 � (7.4)

The effect of the update is determined by the difference between the centroid 
and data point in the data space and the neighborhood function fi (t). The 
neighborhood function decreases for every iteration so there are no drastic 
changes made in the final iteration. In addition to updating the nearest primary 
centroid, all other centroids in the grid space neighborhood of the primary cen-
troid are updated as well. We will review this in more detail in the next substep.

The second substep is to update all centroids in the grid space neighborhood 
as shown in Figure 7.23. The neighborhood update step has to be proportional 
to the distance from the closest centroid to the centroid that is being updated. 
The update function has to be stronger when the distance is closer. Taking into 
account time decay and distance between neighborhood centroids, a Gaussian 

function is commonly used for :

FIGURE 7.22
Weight of the centroid is updated.
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	fi(t) = λi(t)e
( −

(gi − gj)
2

2σ2 )
	 (7.5)

Where λi (t) is the learning rate function that takes a value between 0 and 1 
and decays for every iteration. Usually it is either a linear rate function or an 
inverse of the time function. The variable in the exponential parameter gi − gj 
is the distance between the centroid being updated and the nearest centroid of 
the data point in the grid space.

The variable σ determines the radius of the centroid update or the neighbor-
hood effect. By updating the entire neighborhood of centroids in the grid, 
the SOM self-organizes the centroid lattice. Effectively, the SOM converts data 
from the data space to a location-constrained grid space.

Step 5: Termination
The entire algorithm is continued until no significant centroid updates take 
place in each run or until the specified number of the run counter is reached. 
The selection of the data object can be repeated if the data set size is small. Like 
with many data mining algorithms, a SOM tends to converge to a solution in 
most cases but doesn’t guarantee an optimal solution. To tackle this problem, 
it is necessary to have multiple runs with various initiation measures and com-
pare the results.

Step 6: Mapping a New Data Object
A SOM model itself is a valuable visualization tool that can describe the rela-
tionship between data objects and be used for visual clustering. After the grids 
with the desired number of centroids have been built, any new data object can 

be quickly given a location on the grid space, based on its proximity to the 
centroids. The characteristics of new data objects can be further understood by 
studying the neighbors.

7.4.2 � How to Implement
SOM can be implemented in a few different ways in RapidMiner, with varied 
functionality and resulting output.

	 n	� Data exploration chart: In Chapter 3 Data Exploration, we reviewed 
the SOM chart as one of the data exploration techniques. In 
RapidMiner, any data set connected to a result port has a SOM chart 
feature under the Chart tab. This is a quick and easy method where 
the number of rows and columns can be specified and a SOM chart 
can be rendered.

	 n	� Data Transformation > Attribute set reduction > SOM Operator: The 
SOM operator available under the Data Transformation folder is used 
to reduce the number of dimensions in the data set. It is similar to 
the application of principal component analysis (Chapter 12 Feature 
Selection) where the data set is reduced to a lower dimensionality. In 
theory, a SOM can help reduce the data to any number of dimensions 
below the dimension count of the data set. In this operator, the number 
of desired output dimensions can be specified in the parameters, as 
shown in Figure 7.24. The net size parameter indicates the unique 
values in each of the SOM dimensions. There is no visual output for 
this operator and in two dimensions, only a square topography can be 
achieved through the SOM data transformation operator.

	 n	� RapidMiner Extension > SOM Modeling Operator: The SOM modeling  
operator is available in the SOM extension (Motl, 2012) and offers 

FIGURE 7.23
The weight of the neighborhood centroids are updated.
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be quickly given a location on the grid space, based on its proximity to the 
centroids. The characteristics of new data objects can be further understood by 
studying the neighbors.

7.4.2 � How to Implement
SOM can be implemented in a few different ways in RapidMiner, with varied 
functionality and resulting output.

	 n	� Data exploration chart: In Chapter 3 Data Exploration, we reviewed 
the SOM chart as one of the data exploration techniques. In 
RapidMiner, any data set connected to a result port has a SOM chart 
feature under the Chart tab. This is a quick and easy method where 
the number of rows and columns can be specified and a SOM chart 
can be rendered.

	 n	� Data Transformation > Attribute set reduction > SOM Operator: The 
SOM operator available under the Data Transformation folder is used 
to reduce the number of dimensions in the data set. It is similar to 
the application of principal component analysis (Chapter 12 Feature 
Selection) where the data set is reduced to a lower dimensionality. In 
theory, a SOM can help reduce the data to any number of dimensions 
below the dimension count of the data set. In this operator, the number 
of desired output dimensions can be specified in the parameters, as 
shown in Figure 7.24. The net size parameter indicates the unique 
values in each of the SOM dimensions. There is no visual output for 
this operator and in two dimensions, only a square topography can be 
achieved through the SOM data transformation operator.

	 n	� RapidMiner Extension > SOM Modeling Operator: The SOM modeling  
operator is available in the SOM extension (Motl, 2012) and offers 

FIGURE 7.24
SOM in data transformation.
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FIGURE 7.25
GDP by country data set.

FIGURE 7.26
GDP by country: box-whisker (quartile) plot for all four attributes.
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rich SOM visuals. We will be using SOM extensions for the rest of this 
implementation section, so readers are encouraged to install the SOM 
extension before proceeding further.

The data set we use in this section is the relative gross domestic product (GDP) 
information by country (IMF, 2012) from the World Economic Outlook Data-
base October 2012 by the International Monetary Fund. The data set has 186 
records, one for each country, and four attributes in percentage of GDP: relative 
GDP invested, relative GDP saved, government revenue, and current account 
balance. Figure 7.25 shows the actual raw data for a few rows and Figure 7.26 
shows the quartile plot for all the attributes.

The objective of the clustering is that we want to compare and contrast coun-
tries based on their percentage of GDP invested and saved, government reve-
nue, and current account balance. Note that we are not comparing the size of 
the economy through absolute GDP but size of investment, national savings, 
current account, and size of government relative to the country’s GDP. The 
goal of this modeling exercise is to arrange countries in a grid so that coun-
tries with similar characteristics of investing, savings, size of government, and 
current account are placed next to each other. We are compressing four-di-
mensional information to a two-dimensional map or grid. The data set and 
RapidMiner process can be accessed from the companion site of the book at 
www.LearnPredictiveAnalytics.com.

Step 1: Data Preparation
As a neural network, a SOM cannot accept polynominal or categorical attri-
butes because centroid updates and distance calculations work only with 
numeric values. Polynominal data can be either ignored with information 
loss or converted to a numeric attribute using the Nominal to Numerical type 
conversion operator available in RapidMiner. In the Country-GDP data set, 
there are records (each record is a country) where there is no data. Neural 
networks cannot handle missing values and hence it needs to be replaced by 
either zero or the minimum or average value for the attribute using the Replace 
Missing Value operator. In this example we choose the average as the default 
missing value.

RapidMiner provides a marketplace platform 
called Extensions where third-party developers can 
develop new operators, data mining algorithms, data 
transformation operators, and visual exploration 
tools. Extensions are similar to add-ins in Microsoft 

Office programs. Extensions can be installed 
and uninstalled easily from Help > Updates and 
Extensions. SOM is one of the extensions, along with 
text mining, the R extension, Weka extensions, etc.

http://www.learnpredictiveanalytics.com/
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Step 2: SOM Modeling Operator and Parameters
The SOM modeling extension operator is available in the Self-Organizing Map 
folder, labeled with the same name. Please note that SOM folder is visible only 
when SOM extension is installed. The following parameters can be configured 
in the model operator. The modeling operator accepts the example set with 
numeric data and a label attribute if applicable. In this example set, the coun-
try name is a label attribute. Figure 7.27 shows the RapidMiner process for 
developing a SOM model.

	 n	� Training Rounds: Defaults to 1000. This value indicates the number of 
training rounds for the data object selection process.

	 n	� Net Size: Indicates whether the grid size should be specified by the user 
or automatically approximated by the system. In this exercise we select 
user input for X and Y.

	 n	� Net Size X: Specifies the number of columns in the grid (horizontal 
direction). This is the same as the possible values for the SOM_0 
attribute in the output. In this example we will set this value to 10.

	 n	� Net Size Y: Specifies the number of rows in the grid (vertical direction). 
This also indicates the values for the SOM_1 attribute in the output 
grid. In this example we will set this value to 10.

	 n	� Learning Rate: The neural network learning parameter (λ), which takes 
a value from 0 to 1. The value of λ determines how sensitive the change 
in weight is to the previous weights. A value closer to 0 means the new 
weight would be more based on previous weight and an λ closer to 1 
means that weight would be mainly based on error correction. We are 
assigning the initial λ is 0.9 (see Chapter 4 Classification and Section 
4.5 on Neural Networks).

	 n	� Learning Rate function: The learning rate function in a neural network 
is a time decay function of the learning process. The default and most 
commonly used time decay function is the inverse of time.

Step 3: Execution and Interpretation
The RapidMiner process can be saved and executed. The output of the SOM mod-
eling operator consists of a visual model and a grid data set. The visual model is 
a lattice with centroids and mapped data points. The grid data set output is the 
example set labeled with location coordinates for each record in the grid lattice.

Visual Model
The visual model of the SOM displays the most recognizable form of SOM in 
a hexagonal grid format. The size of the grid is configured by the input param-
eters that set the net size of X and Y. There are several advanced visualization 
styles available in Visualization results window. The SOM visual output can be 
customized by the following parameters:

	 n	� Visualization Style: This selection controls the visual layout and 
background color of the SOM hexagons. The value of the selected 
measure is represented as a background gradient color. The default, 
U-Matrix, presents a background gradient color proportional to the 
distance of the central data points in adjacent hexagons. The P-Matrix 
option shows the number of example data points through the 
background gradient color. The selection of an individual attribute 
name for the visualization style renders the background gradient 
proportional to the value of the selected attribute. The visualization 
style selection does not rearrange the data points assigned to hexagons.

	 n	� Label: Selection shows the attribute value selected in the hexagons.
	 n	� Color Schema: Selection of monochrome or color scheme.

Figure 7.28 shows a SOM with the default selection of the label as Country 
and the visualization style as U-Matrix. We can observe how countries are 
placed on the grid based on their relationship with each other, as evaluated by 
the four economic metrics in relation with GDP. Countries with similar char-
acteristics are placed closer to each other than others in the grid. If more than 
one country belongs to a centroid (hexagon), then the label of one country 

FIGURE 7.27
Clustering with SOM
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	 n	� Learning Rate: The neural network learning parameter (λ), which takes 
a value from 0 to 1. The value of λ determines how sensitive the change 
in weight is to the previous weights. A value closer to 0 means the new 
weight would be more based on previous weight and an λ closer to 1 
means that weight would be mainly based on error correction. We are 
assigning the initial λ is 0.9 (see Chapter 4 Classification and Section 
4.5 on Neural Networks).

	 n	� Learning Rate function: The learning rate function in a neural network 
is a time decay function of the learning process. The default and most 
commonly used time decay function is the inverse of time.

Step 3: Execution and Interpretation
The RapidMiner process can be saved and executed. The output of the SOM mod-
eling operator consists of a visual model and a grid data set. The visual model is 
a lattice with centroids and mapped data points. The grid data set output is the 
example set labeled with location coordinates for each record in the grid lattice.

Visual Model
The visual model of the SOM displays the most recognizable form of SOM in 
a hexagonal grid format. The size of the grid is configured by the input param-
eters that set the net size of X and Y. There are several advanced visualization 
styles available in Visualization results window. The SOM visual output can be 
customized by the following parameters:

	 n	� Visualization Style: This selection controls the visual layout and 
background color of the SOM hexagons. The value of the selected 
measure is represented as a background gradient color. The default, 
U-Matrix, presents a background gradient color proportional to the 
distance of the central data points in adjacent hexagons. The P-Matrix 
option shows the number of example data points through the 
background gradient color. The selection of an individual attribute 
name for the visualization style renders the background gradient 
proportional to the value of the selected attribute. The visualization 
style selection does not rearrange the data points assigned to hexagons.

	 n	� Label: Selection shows the attribute value selected in the hexagons.
	 n	� Color Schema: Selection of monochrome or color scheme.

Figure 7.28 shows a SOM with the default selection of the label as Country 
and the visualization style as U-Matrix. We can observe how countries are 
placed on the grid based on their relationship with each other, as evaluated by 
the four economic metrics in relation with GDP. Countries with similar char-
acteristics are placed closer to each other than others in the grid. If more than 
one country belongs to a centroid (hexagon), then the label of one country 
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FIGURE 7.28
SOM output in the hexagonal grid.

closer to centroid is displayed on the grid. The grid locations of all the coun-
ties are listed in the location coordinates section of the results window.

A few interesting patterns in the data can be observed by changing the visu-
alization style as a metric in the data set. In Figure 7.29, government revenue 
as percentage of GDP is used and visually, countries with high government 
revenue as a percentage of GDP is displayed on the top-left side of the grid 
(example: Belgium 48%) and countries with low government revenue are at 
bottom of the grid (Bangladesh 11%).

Figure 7.30 shows the national savings rate visualization to in the SOM; coun-
tries with a high savings rate (Algeria 49%) are concentrated on the left side 
and countries with a low savings rate (Maldives –2%) are concentrated on the 
right side of the SOM.

Location Coordinates
The second output of the SOM operator contains the location coordinates of the 
X- and Y-axes of grid with labels SOM_0 and SOM_1. The coordinate values of 
location range from 0 to net size – 1, as specified in the model parameters, since 
all data objects, in this case countries, are assigned to a specific location in the 
grid. This output, as shown in Figure 7.31, can be further used for postprocess-
ing such as distance calculation of locations between countries in the grid space.
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FIGURE 7.29
SOM output with color overlay related to government revenue.

FIGURE 7.30
SOM output with color overlay related to national savings rate.
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7.4.3 � Conclusion
The methodology of self-organizing maps is derived from the foundations of 
both neural network and prototype-clustering approaches. Self-organizing  
maps are an effective visual clustering tool to understand numeric high- 
dimensional data. They reduce the features of the data set to two or three fea-
tures, which is used to specify the topology of the layout. Hence, SOMs are 
predominantly used as a visual discovery and data exploration technique. 
Some of the recent applications of SOMs include the methods that are used 
in conjunction with other data mining and analytics techniques. SOMs are 
used in combination with graph mining (Resta, 2012), text mining (Liu 
et al., 2012), speech recognition (Kohonen, 1988), etc.

REFERENCES
Bache, K., & Lichman, M. (2013). University of California, School of Information and Computer Science. 

Retrieved from UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Berry, M. J., & Linoff, G. (2000). Converging on the Customer: Understanding the Customer 
Behavior in the Telecommunications Industry. In M. J. Berry, & G. Linoff (Eds.), Mastering Data 
Mining: The Art and Science of Customer Relationship Management (pp. 357–394). John Wiley &  
Sons, Inc.

Berry, M. J., & Linoff, G. (2000). Data Mining Techniques and Algorithms. In M. J. Berry, & G. 
Linoff (Eds.), Mastering Data Mining: The Art and Science of Customer Relationship Management 
(pp. 103–107). John Wiley & Sons, Inc.

FIGURE 7.31
SOM output with location coordinates.

http://archive.ics.uci.edu/ml


255References

Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 1(2), 224–227.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering 
clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on 
Knowledge Discovery and Data Mining KDD-96. (Vol. 96, pp. 226–231). AAAI Press.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 
179–188.

Germano, T. (1999, March 23). Self-Organizing Maps. Retrieved Dec 10, 2013, from http://davis.
wpi.edu/∼matt/courses/soms/.

Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. Advances In Neural Information Process-
ing Systems, 17, 1–8 http://dx.doi.org/10.1.1.9.3574.

IMF (2012, Oct). World Economic Outlook Database. Retrieved Mar 15, 2013, from International 
Monetary Fund. http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx.

Kohonen, T. (1988). The “neural” phonetic typewriter. Computer,. IEEE, 21(3), 11–22. http://dx.
doi.org/10.1109/2.28.

Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological 
Cybernetics, 43, 59–69.

Liu, Y., Liu, M., & Wang, X. (2012). Application of Self-Organizing Maps in Text Clustering:  
A Review. In M. Johnsson (Ed.), Applications of Self-Organizing Maps (pp. 205–220). InTech.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28, 
129–137.

Motl, J. (2012). SOM Extension for Rapid Miner. Prague: Czech Technical University.

Pearson, P., & Cooper, C. (2012). Using Self Organizing Maps to Analyze Demographics and Swing 
State Voting in the 2008 U.S. Presidential Election. In N. Mana, F. Schwenker, & E. Trentin 
(Eds.), Artificial Neural Networks in Pattern Recognition ANNPR’12 Proceedings of the 5th INNS 
IAPR TC 3 GIRPR conference (pp. 201–212). Berlin: Heidelberg: Springer Berlin Heidelberg. 
http://dx.doi.org/10.1007/978-3-642-33212-8.

Resta, M. (2012). Graph Mining Based SOM: A Tool to Analyze Economic Stability. In M. 
Johnsson (Ed.), Applications of Self-Organizing Maps (pp. 1–26). InTech. Retrieved from http://
www.intechopen.com/books/applications-of-self-organizing-maps.

Tan, P.-N., Michael, S., & Kumar, V. (2005). Clustering Analysis: Basic Concepts and Algorithms. In 
P.-N. Tan, S. Michael, & V. Kumar (Eds.), Introduction to Data Mining (pp. 487–555). Boston, MA: 
Addison-Wesley.

Witten, I. H., & Frank, E. (2005). Algorithms: The Basic Methods. In Data Mining: Practical Machine 
Learning Tools and Techniques (pp. 136–139). San Francisco, CA: Morgan Kaufmann.

http://davis.wpi.edu/%7Ematt/courses/soms/
http://davis.wpi.edu/%7Ematt/courses/soms/
http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx
http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx
﻿﻿http://dx.doi.org/﻿10.1109/2.28﻿
﻿﻿http://dx.doi.org/﻿10.1109/2.28﻿
﻿﻿http://dx.doi.org/﻿10.1007/978-3-642-33212-8﻿
http://www.intechopen.com/books/applications-of-self-organizing-maps
http://www.intechopen.com/books/applications-of-self-organizing-maps


Predictive Analytics and Data Mining. http://dx.doi.org/10.1016/B978-0-12-801460-8.00008-2
Copyright © 2015 Elsevier Inc. All rights reserved.

257

CHAPTER 8

In this chapter we will formally introduce the most commonly used meth-
ods for testing the quality of a predictive model. Throughout this book, we 
have used various “validation” techniques to split the available data into a 
training set and a testing set. We have used several different types of “perfor-
mance” operators in RapidMiner in conjunction with validation without really 
explaining in detail how these operators function. We will now discuss several 
ways in which predictive models are evaluated for their performance.

There are three main tools that are available to test a classification model’s 
quality: confusion matricies (or truth tables), lift charts, and ROC (receiver oper-
ator characteristic) curves. We will define and describe in detail how these tools 
are constructed and demonstrate how to implement performance evaluations 
using RapidMiner. To evaluate a numeric prediction from a regression model, 
there are many conventional statistical tests that may be applied (Black, 2008) 
which was discussed in Chapter 5 Regression Methods.

Model Evaluation

Direct marketing (DM) companies, which send out 
postal mail (or in the days before do-not-call lists, called 
prospects) were one of the early pioneers in applying 
predictive analytics techniques (Berry, 1999). A key 
performance indicator for their marketing activities 
is of course the improvement in their bottom line as 
a result of their utilization of predictive models.

Let us assume that a typical average response rate for 
direct mail campaign is 10%. Let us further make the 
following simple assumptions: cost per mail sent = $1 
and potential revenue per response = $20. If they have 
10,000 people to send out their mailers to, then they can 
expect to receive potential revenues of 10,000 x 10% x 
$20 = $20,000, with a net profit of $10,000. Typically, the 

mailers are sent out in batches to spread costs over a 
period of time. Let us further assume that these are sent 
out in batches of 1,000. The first question someone would 
ask is how to divide the list of names into these batches. 
If the average expectation of return is 10%, then would it 
not make a lot of sense to just send one batch of mails 
to those prospects that make up this 10% and be done 
with the campaign? Clearly this would save a lot of time 
and money and the net profit would jump to $19,000!

Can we identify all of these 10 percenters? While this 
is clearly unrealistic, we can use our classification 
techniques to rank or score prospects by their likelihood 
to respond to the mailers. Predictive analytics is after 
all about converting future uncertainties into usable 

FROM EVALUATING PROSPECTS TO PREDICTIVE MODEL FACE-OFF
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8.1 � CONFUSION MATRIX (OR TRUTH TABLE)
Classification performance is best described by an aptly named tool called 
the confusion matrix. Understanding the confusion matrix requires becoming 
familiar with several definitions. But before introducing the definitions, we 
must look at a basic confusion matrix for a binary or binomial classification 
where there can be two classes (say, Y or N). The accuracy of classification of a 
specific example can be viewed one of four possible ways:

	 n	� The predicted class is Y, and the actual class is also Y → this is a “True 
Positive” or TP

	 n	� The predicted class is Y, and the actual class is N → this is a “False 
Positive” or FP

	 n	� The predicted class is N, and the actual class is Y → this is a “False 
Negative” or FN

	 n	� The predicted class is N, and the actual class is also N → this is a “True 
Negative” or TN

A basic confusion matrix is traditionally arranged as a 2 x 2 matrix as shown in 
Table 8.1. The predicted classes are arranged horizontally in rows and the actual 
classes are arranged vertically in columns, although sometimes this order is 
reversed (Kohavi & Provost, 1998). (Note: We will follow the convention used 
by RapidMiner and lay out the predicted classes row-wise as shown in Table 8.1.)  
A quick way to examine this matrix or a “truth table” as it is also called is to 
scan the diagonal from top left to bottom right. An ideal classification perfor-
mance would only have entries along this main diagonal and the off-diagonal 
elements would be zero.

These four cases will now be used to introduce several commonly used terms 
for understanding and explaining classification performance. As mentioned 
earlier, a perfect classifier will have no entries for FP and FN (i.e., the number 
of FP = number of FN = 0).

Sensitivity is the ability of a classifier to select all the cases that need to be selected. 
A perfect classifier will select all the actual Y’s and will not miss any actual Y’s.  
In other words it will have no false negatives. In reality, any classifier will miss 
some true Y’s and thus have some false negatives. Sensitivity is expressed as a ratio 

probabilities (Taylor, 2011). Then we can use our 
predictive method to order these probabilities and 
send out our mailers to only those who score above a 
particular threshold (say 85% chance of response).

Finally, some techniques may be better suited to 
this problem than others. How do we compare the 

different available methods by their performance? Will 
logistic regression capture these top 10 percenters 
better than support vector machines? What are 
the different metrics we can use to select the best 
performing methods? These are some of the things 
we will discuss in this chapter in more detail.
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(or percentage) calculated as follows: TP/(TP + FN). However, sensitivity alone is 
not sufficient to evaluate a classifier. In situations such as credit card fraud, where 
rates are typically around 0.1%, an ordinary classifier may be able to show sensi-
tivity of 99.9% by picking nearly all the cases as legitimate transactions or TP. We 
also need the ability to detect illegitimate or fraudulent transactions, the TNs. This 
is where the next measure, specificity, which ignores TPs, comes in.

Specificity is the ability of a classifier to reject all the cases that need to be 
rejected. A perfect classifier will reject all the actual N’s and will not deliver any 
unexpected results. In other words, it will have no false positives. In reality, any 
classifier will select some cases that need to be rejected and thus have some 
false positives. Specificity is expressed as a ratio (or percentage) calculated as 
follows: TN/(TN+FP).

Relevance is a term that is easy to understand in a document search and retrieval 
scenario. Suppose you run a search for a specific term and that search returns 
100 documents. Of these, let us say only 70 were useful because they were rel-
evant to your search. Furthermore, the search actually missed out on an addi-
tional 40 documents that could have been actually useful to you. With this 
context, we can define additional terms.

Precision is defined as the proportion of cases found that were actually relevant. 
For the above example, this number was 70 and thus the precision is 70/100 or 
70%. The 70 documents were TP, whereas the remaining 30 were FP. Therefore 
precision is TP/(TP+FP).

Recall is defined as the proportion of the relevant cases that were actually found 
among all the relevant cases. Again with the above example, only 70 of the 
total 110 (= 70 found + 40 missed) relevant cases were actually found, thus giv-
ing a recall of 70/110 = 63.63%. You can see that recall is the same as sensitivity, 
because recall is also given by TP/(TP+FN).

Accuracy is defined as the ability of the classifier to select all cases that need 
to be selected and reject all cases that need to be rejected. For a classifier with 
100% accuracy, this would imply that FN = FP = 0. Note that in the document 
search example, we have not indicated the TN, as this could be really large. 
Accuracy is given by (TP+TN)/(TP+FP+TN+FN).

Finally, error is simply the complement of accuracy, measured by (1 – accuracy).

Table 8.1  Confusion Matrix

Actual Class(Observation)

Y N

Predicted Class 
(Expectation)

Y TP (true positive) Correct result FP (false positive) Unexpected result

N FN (false negative) Missing result TN (true negative) Correct absence of result
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Table 8.2 summarizes all the major definitions. Fortunately, the analyst does 
not need to memorize these equations because their calculations are always 
automated in any tool of choice. However, it is important to have a good fun-
damental understanding of these terms.

8.2 � RECEIVER OPERATOR CHARACTERISTIC (ROC) 
CURVES AND AREA UNDER THE CURVE (AUC)

Measures like accuracy or precision are essentially aggregate in nature, in the 
sense that they provide the average performance of the classifier on the data 
set. A classifier can have a very high accuracy on a data set, but have very poor 
class recall and precision. Clearly, a model to detect fraud is no good if its abil-
ity to detect TP for the fraud = yes class (and thereby its class recall) is low. It is 
therefore quite useful to look at measures that compare different metrics to see 
if there is a situation for a trade-off: for example, can we sacrifice a little overall 
accuracy to gain a lot more improvement in class recall? One can examine a 
model’s rate of detecting TPs and contrast it with its ability to detect FPs. The 
receiver operator characteristic (ROC) curves meet this need and were origi-
nally developed in the field of signal detection (Green, 1966). A ROC curve is 
created by plotting the fraction of true positives (TP rate) versus the fraction of 
false positives (FP rate). When we generate a table of such values, we can plot 
the FP rate on the horizontal axis and the TP rate (same as sensitivity or recall) 
on the vertical axis. The FP can also be expressed as (1 – specificity) or TN rate.

Consider a classifier that could predict if a website visitor is likely to click on a 
banner ad: the model would be most likely built using historic click-through 
rates based on pages visited, time spent on certain pages, and other character-
istics of site visitors. In order to evaluate the performance of this model on test 
data, we can generate a table such as the one shown in Table 8.3.

The first column “Actual Class” consists of the actual class for a particular exam-
ple (in this case a website visitor, who has clicked on the banner ad). The next 
column, “Predicted Class” is the model prediction and the third column, “Confi-
dence of response” is the confidence of this prediction. In order to create a ROC 

Table 8.2  Evaluation Measures

Term Definition Calculation

Sensitivity Ability to select what needs to be selected TP/(TP+FN)
Specificity Ability to reject what needs to be rejected TN/(TN+FP)
Precision Proportion of cases found that were relevant TP/(TP+FP)
Recall Proportion of all relevant cases that were found TP/(TP+FN)

Accuracy Aggregate measure of classifier performance (TP+TN)/(TP+TN+FP+FN)



Table 8.3  Classifier Performance Data Needed for Building an ROC Curve

Actual Class Predicted Class
Confidence of 
“response” Type?

Number  
of TP

Number  
of FP

Fraction  
of FP

Fraction  
of TP

response response 0.902 TP 1 0 0 0.167
response response 0.896 TP 2 0 0 0.333
response response 0.834 TP 3 0 0 0.500
response response 0.741 TP 4 0 0 0.667
no response response 0.686 FP 4 1 0.25 0.667
response response 0.616 TP 5 1 0.25 0.833
response response 0.609 TP 6 1 0.25 1
no response response 0.576 FP 6 2 0.5 1
no response response 0.542 FP 6 3 0.75 1
no response response 0.530 FP 6 4 1 1
no response no response 0.440 TN 6 4 1 1
no response no response 0.428 TN 6 4 1 1
no response no response 0.393 TN 6 4 1 1
no response no response 0.313 TN 6 4 1 1
no response no response 0.298 TN 6 4 1 1
no response no response 0.260 TN 6 4 1 1
no response no response 0.248 TN 6 4 1 1
no response no response 0.247 TN 6 4 1 1
no response no response 0.241 TN 6 4 1 1

no response no response 0.116 TN 6 4 1 1
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chart, we need to sort the predicted data in decreasing order of this confidence 
level, which has been done in this case. Comparing columns Actual class and 
Predicted class, we can identify the type of prediction: for instance, spreadsheet 
rows 2 through 5 are all true positives (TP) and row 6 is the first instance of a false 
positive (FP). As observed in columns “Number of TP” and “Number of FP”, we 
can keep a running count of the TPs and FPs and also calculate the fraction of 
TPs and FPs, which are shown in columns “Fraction of TP” and “Fraction of FP”.

Observing the “Number of TP” and “Number of FP” columns, we see that the 
model has discovered a total of 6 TPs and 4 FPs (the remaining 10 examples 
are all TNs). We also see that the model has identified nearly 67% of all the TPs 
before it fails and hits its first FP (row 6 above). Finally all TPs have been iden-
tified when Fraction of TP = 1) before the next FP was run into. If we were to 
now plot Fraction of FP (False Positive Rate) versus Fraction of TP (True Positive 
Rate), then we would see a ROC chart similar to the one shown in Figure 8.1. 
Clearly an ideal classifier would have an accuracy of 100% (and thus would have 

FIGURE 8.1
Comparing ROC curve for the example shown in Table 8.3 to random and ideal classifiers.
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identified 100% of all TPs). Thus the ROC for an ideal classifier would look like 
the thick curve shown in Figure 8.1. Finally a very ordinary or random classifier 
(which has only a 50% accuracy) would possibly find one FP for every TP and 
thus look like the 45-degree line shown.

As the number of test examples becomes larger, the ROC curve will become 
smoother: the random classifier will simply look like a straight line drawn 
between the points (0,0) and (1,1)— the stair steps become very small. The area 
under this curve is basically the area of a right triangle (with side 1 unit and height 
1 unit), which is 0.5. This quantity is termed area under the curve (AUC). AUC for 
the ideal classifier is 1.0. Thus the performance of a classifier can also be quanti-
fied by its AUC: obviously any AUC higher than 0.5 is better than random and 
the closer it is to 1.0, the better the performance. A common rule of thumb is to 
select those classifiers that not only have a ROC curve that is closest to ideal, but 
also an AUC higher than 0.8. Typical uses for AUC and ROC curves are to com-
pare the performance of different classification algorithms for the same dataset.

8.3 � LIFT CURVES
Lift curves or lift charts were first deployed in direct marketing where the prob-
lem was to identify if a particular prospect was worth calling or sending an 
advertisement by mail. We mentioned in the use case at the beginning of this 
chapter that with a predictive model, one can score a list of prospects by their 
propensity to respond to an ad campaign. When we sort the prospects by this 
score (by the decreasing order of their propensity to respond), we now end up 
with a mechanism to systematically select the most valuable prospects right at 
the beginning and thus maximize our return. Thus, rather than mailing out the 
ads to a random group of prospects, we can now send our ads to the first batch 
of “most likely responders,” followed by the next batch and so on.

Without classification, the “most likely responders” are distributed randomly 
throughout the data set. Let us suppose we have a data set of 200 prospects and 
it contains a total of 40 responders or TPs. If we break up the data set into, say, 
10 equal sized batches (called deciles), the likelihood of finding TPs in each 
batch is also 20%, that is, four samples in each decile will be TPs. However, 
when we use a predictive model to classify our prospects, a good model will 
tend to pull these “most likely responders” into the top few deciles. Thus we 
might find in our simple example that the first two deciles will have all 40 TPs 
and the remaining eight deciles have none.

Lift charts were developed to demonstrate this in a graphical way (Rud, 2000). 
The focus is again on the true positives and thus it can be argued that they 
indicate the sensitivity of the model unlike ROC curves, which can show the 
relation between sensitivity and specificity.
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The basis for building lift charts is the following: randomly selecting x% of the 
data (for prospects to call) would yield x% of targets (to call or not). Lift is the 
improvement over this random selection that a predictive model can poten-
tially yield because of its scoring or ranking ability. For example in our earlier 
data from Table 8.3, there are a total of 6 TPs out of 20 test cases. If we were 
to take the unscored data and randomly select 25% of the examples, we could 
expect 25% of them to be TPs (or 25% of 6 = 1.5). However, scoring and reor-
dering the data set by confidence will improve this. As can be seen in Table 8.4,  
the first 25% or quartile of scored (reordered) data now contains four TPs. 
This translates to a “lift” of 4/1.5 = 2.67. Similarly the second quartile of the 
unscored data can be expected to contain 50% (or three) of the TPs. As seen in 
Table 8.4, the scored 50% data contains all six TPs, giving a lift of 6/3 = 2.00.

The steps to build lift charts are as follows:

	 1.	� Generate scores for all the data points (prospects) in the test set using 
the trained model.

	 2.	� Rank the prospects by decreasing score or confidence of “response.”
	 3.	� Count the TPs in the first 25% (quartile) of the data set, and then the first 

50% (add the next quartile) and so on; see columns “Cumulative TP” and 
“Quartile” in Table 8.4.

	 4.	� Gain at a given quartile level is the ratio of the cumulative number of 
TPs in that quartile to the total number of TPs in the entire data set (six 
in the above example). The 1st quartile gain is therefore 4/6 or 67%, the 
2nd quartile gain is 6/6 or 100%, and so on.

	 5.	� Lift is the ratio of gain to the random expectation at a given quartile 
level. Remember that random expectation at the xth quartile is x%. In 
the above example, the random expectation is to find 25% of 6 = 1.5 
TPs in the 1st quartile, 50% or 3 TPs in the 2nd quartile, and so on. 
The corresponding 1st quartile lift is therefore 4/1.5 = 2.667, the 2nd 
quartile lift is 6/3 = 2.00, and so on.

The corresponding curves for the simple example are shown in Figure 8.2. Typ-
ically lift charts are created on deciles not quartiles. We chose quartiles because 
they helped to illustrate the concept using the small 20-sample test data set. 
However the logic remains the same for deciles or any other groupings as well.

8.4 � EVALUATING THE PREDICTIONS: IMPLEMENTATION
We will use a built-in data set in RapidMiner to demonstrate how all the three 
classification performances (confusion matrix, ROC/AUC and lift/gain charts) 
are evaluated. The process shown in Figure 8.3 uses the Generate Direct Mailing 
Data operator to create a 10,000 record data set. The objective of the modeling 
(Naïve Bayes used here) is to predict whether a person is likely to respond to a 



Table 8.4  Scoring Predictions and Sorting by Confidences is the Basis for Generating Lift Curves

Actual Class
Predicted 
Class

Confidence of 
“response” Type? Cumulative TP Cumulative FP Quartile Gain Lift

response response 0.902 TP 1 0 1st 67% 2.666667
response response 0.896 TP 2 0 1st
response response 0.834 TP 3 0 1st
response response 0.741 TP 4 0 1st
no response response 0.686 FP 4 1 1st
response response 0.616 TP 5 1 2nd 100% 2
response response 0.609 TP 6 1 2nd
no response response 0.576 FP 6 2 2nd
no response response 0.542 FP 6 3 2nd
no response response 0.530 FP 6 4 2nd
no response no response 0.440 TN 6 4 3rd 100% 1.333333
no response no response 0.428 TN 6 4 3rd
no response no response 0.393 TN 6 4 3rd
no response no response 0.313 TN 6 4 3rd

no response no response 0.298 TN 6 4 3rd
no response no response 0.260 TN 6 4 4th 100% 1
no response no response 0.248 TN 6 4 4th
no response no response 0.247 TN 6 4 4th
no response no response 0.241 TN 6 4 4th

no response no response 0.116 TN 6 4 4th
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FIGURE 8.2
Lift and gain curves.

FIGURE 8.3
Process setup to demonstrate typical classification performance metrics.
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direct mailing campaign or not based on demographic attributes (age, lifestyle, 
earnings, type of car, family status, and sports affinity).

Step 1: Data Preparation
Create a data set with 10,000 examples using the Generate Direct Mailing Data 
operator by setting a local random seed (default = 1992) to ensure repeatabil-
ity. Convert the label attribute from polynomial (nominal) to binominal using 
the appropriate operator as shown. This enables us to select specific binominal 
classification performance measures.

Split data into two partitions: an 80% partition (8,000 examples) for model 
building and validation and a 20% partition for testing. An important point of 
note is that data partitioning is not an exact science and this ratio can change 
depending upon the data.

Connect the 80% output (upper output port) from the Split Data operator to 
the Split Validation operator. Select a relative split with a ratio of 0.7 (70% for 
training) and shuffled sampling.

Step 2: Modeling Operator and Parameters
Insert the naïve Bayes operator in the Training panel of the Split Validation 
operator and the usual Apply Model operator in the Testing panel. Add a Per-
formance (Binomial Classification) operator. Select the following options in the 
performance operator: accuracy, false positive, false negative, true positive, true 
negative, sensitivity, specificity, and AUC.

Step 3: Evaluation
Add another Apply Model operator outside the Split Validation operator and 
deliver the model to its “mod” input port while connecting the 2,000 example 
data partition from Step 3 to the “unl” port. Add a Create Lift Chart operator 
with the following options selected: target class = response, binning type = 
frequency, and number of bins = 10. Note the port connections as shown in 
Figure 8.3.

Step 4: Execution and Interpretation
When the above process is run, we will generate the confusion matrix and ROC 
curve for the validation sample (30% of the original 80% = 2400 examples) 
whereas we will generate a lift curve for the test sample (2,000 examples). 
There is no reason why we cannot add another Performance (Binomial Clas-
sification) operator for the test sample or create a lift chart for the validation 
examples. (The reader should try this as an exercise —how will you deliver the 
output from the Create Lift Chart operator when it is inserted inside the Split 
Validation operator?)
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The confusion matrix shown in Figure 8.4 is used to calculate several common 
metrics using the definitions from Table 8.1. Compare them with the Rapid-
Miner outputs to verify your understanding.

TP = 629, TN = 1231, FP = 394, FN = 146

Term Definition Calculation

Sensitivity TP/(TP+FN) 629/(629+146) = 81.16%
Specificity TN/(TN+FP) 1231/(1231+394) = 75.75%
Precision TP/(TP+FP) 629/(629+394) = 61.5%
Recall TP/(TP+FN) 629/(629+146) = 81.16%
Accuracy (TP+TN)/(TP+TN+FP+FN) (629+1231)/

(629+1231+394+146) = 
77.5%

Note that RapidMiner makes a distinction between the two classes while 
calculating precision and recall. For example, in order to calculate a class 
recall for “no response,” the positive class becomes “no response” and the 
corresponding TP is 1231 and corresponding FN is 394. Therefore a class 
recall for “no response” is 1231/(1231+394) = 75.75% whereas our calcu-
lation above assumed that “response” was the positive class. Class recall is 
an important metric to keep in mind when dealing with highly unbalanced 
data. Data is considered unbalanced if the proportion of the two classes is 
skewed. When models are trained on unbalanced data, the resulting class 
recalls also tend to be skewed. For example, in a data set where there are 
only 2% responses, the resulting model can have a very high recall for “no 
responses” but a very low class recall for “responses.” This skew is not seen 
in the overall model accuracy and using this model on unseen data may 
result in severe misclassifications.

The solution for this problem is to either balance the training data so that we 
end up with a more or less equal proportion of classes or to insert penalties or 
costs on misclassifications using the Metacost operator as discussed in Chapter 5  

true no response
1231
394
75.75%

pred. no response
pred. response
class recall

true response
146
629
81.16%

class precision
89.40%
61.49%

FIGURE 8.4
Confusion matrix for validation set of direct marketing data set.
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Regression Methods. Data balancing is explained in more detail in Chapter 13 
Getting Started with RapidMiner.

The AUC is shown along with the ROC curve in Figure 8.5. As mentioned ear-
lier, AUC values close to 1 are indicative of a good model. The ROC captures 
the sorted confidences of a prediction. As long as the prediction is correct for 
the examples the curve takes one step up (increased TP). If the prediction is 
wrong the curve takes one step to the right (increased FP). RapidMiner can 
show two additional AUCs called “optimistic” and “pessimistic.” The dif-
ferences between the optimistic and pessimistic curves occur when there are 
examples with the same confidence, but the predictions are sometimes false 
and sometimes true. The optimistic curve shows the possibility that the correct 
predictions are chosen first so the curve goes steeper upwards. The pessimistic 
curve shows the possibility that the wrong predictions are chosen first so the 
curve increases more gradually.

Finally, RapidMiner’s lift chart outputs do not directly indicate the lift val-
ues as we demonstrated with the simple example earlier. In step 5 of our 
process, we selected 10 bins for our chart and thus each bin will have 200 
examples (a decile). Recall that to create a lift chart we need to sort all the 
predictions by the confidence of the positive class (“response”), which is 
shown in Figure 8.6.

The first bar in the lift chart shown in Figure 8.7 corresponds to the first 
bin of 200 examples after the sorting. The bar tells us that there are 181 
TP in this bin (you can see from the table in Figure 8.6 that the very sec-
ond example, Row No. 1973, is an FP). From our confusion matrix earlier, 
we know that there are 629 TPs in this example set. A random classifier 
would have identified 10% of these or 62.9 TPs in the first 200 examples. 
Therefore the lift for the first decile is 181/62.9 = 2.87. Similarly the lift 
for the first two deciles is (181+167)/(2*62.9) = 2.76 and so on. Also, the 
first decile contains 181/629 = 28.8% of the TPs, the first two deciles con-
tain (181+167)/629 = 55.3% of the TPs, and so on. This is shown in the 
cumulative (percent) gains curve on the right hand y-axis of the lift chart 
output.

As described earlier, a good classifier will accumulate all the TPs in the 
first few deciles and will have very few FPs at the top of the heap. This will 
result in a gain curve that quickly rises to the 100% level within the first few 
deciles.



FIGURE 8.6
Table of scored responses used to build the lift chart.
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CONCLUSION
This chapter covered the basic performance evaluation tools that are typically 
used in classification methods. We started out by describing the basic elements 
of a confusion matrix and explored in detail concepts that are important to 
understanding it, such as sensitivity, specificity, and accuracy. We then described 
the receiver operator characteristic (ROC) curve, which had its origins in sig-
nal detection theory and has now been adopted for data mining, along with 
the equally useful aggregate metric of area under the curve (AUC). Finally, we 
described two very useful tools that had their origins in direct marketing appli-
cations: lift and gain charts. We discussed how to build these curves in general 
and how they can be constructed using RapidMiner. In summary, these tools 
are some of the most commonly used metrics for evaluating predictive models 
and developing skill and confidence in using these is a prerequisite to develop-
ing data mining expertise.

One key to developing good predictive models is to know when to use which 
measures. As discussed earlier, relying on a single measure like accuracy can 
be misleading. For highly unbalanced data sets, we rely on several measures 
such as class recall and specificity in addition to accuracy. ROC curves are fre-
quently used to compare several algorithms side by side. Additionally, just as 
there are an infinite number of triangular shapes that have the same area, AUC 
should not be used alone to judge a model—AUC and ROCs should be used 
in conjunction to rate a model’s performance. Finally, lift and gain charts are 
most commonly used for scoring applications where we need to rank-order the 
examples in a data set by their propensity to belong to a particular category.

REFERENCES
Berry, M. A. (1999). Mastering Data Mining: The Art and Science of Customer Relationship Managemen. 

New York: John Wiley and Sons.

Black, K. (2008). Business Statistics for Contemporary Decision Making. New York: John Wiley and 
Sons.

Green, D. S. (1966). Signal Detection Theory and Psychophysics. New York: John Wiley and Sons.

Kohavi, R., & Provost, F., (Editors) (1998). Glossary of Terms. Machine Learning 30, 271–274.

Rud, O. (2000). Data Mining Cookbook: Modeling Data for Marketing, Risk and Customer Relationship 
Management. New York: John Wiley and Sons.

Taylor, J. (2011, October 13). Decision Management Systems: A Practical Guide to Using Business Rules 
and Predictive Analytics. IBM Press.



Predictive Analytics and Data Mining. http://dx.doi.org/10.1016/B978-0-12-801460-8.00009-4
Copyright © 2015 Elsevier Inc. All rights reserved.

275

CHAPTER 9

In this chapter we will learn how to extract patterns and discover new knowl-
edge by applying many of the techniques we have learned so far, not on ordered 
data, but on unstructured natural language. This constitutes the vast and fast 
growing area of text and web mining. For all the techniques described up to 
this point, a cleaned and organized table consisting of rows and columns of 
data was fed as input to an algorithm. The output from the algorithm was a 
model that could then be used to predict outcomes from a new data set or 
to find patterns in data. But how do we apply the same techniques to extract 
patterns and predict outcomes when the input data looks like normal written 
communication or worse? This might seem baffling at first, but as we shall see 
in this chapter, there are ways of presenting text data to the algorithms that 
process “normal” data.

We start out with a brief historical introduction to the field of text mining to 
establish some context. In the following section, we will describe techniques 
that can convert common text into a semi-structured format that we, and the 
algorithms we have introduced so far, can recognize. Finally we will introduce 
the toolkit that is available in RapidMiner to do this conversion and apply it 
in two case studies: one involving an unsupervised (clustering) model and 
another involving a supervised (SVM) model. We will close the chapter with 
some key considerations to keep in mind while implementing text mining.

Text mining is the new frontier of predictive analytics and data mining. Eric 
Siegel in his book Predictive Analytics (Siegel, 2013) provides an interesting 
analogy: if all the data in the world was equivalent to the water on earth, then 
textual data is like the ocean, making up a majority of the volume. Text ana-
lytics is driven by the need to process natural human language, but unlike 
numeric or categorical data, natural language does not exist in a “structured” 
format consisting of rows (of examples) and columns (of attributes). Text min-
ing is therefore the domain of unstructured data mining.

Some of the first applications of text mining came about when people were try-
ing to organize documents (Cutting, 1992). Hearst (Hearst, June 20-26, 1999) 

Text Mining
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recognized that text analysis does not require artificial intelligence but “…a mix-
ture of computationally-driven and user-guided analysis,” which is at the heart of 
the supervised models used in predictive analytics that we have discussed so far.

People in the data warehousing and business intelligence domains can 
appreciate text mining in a slightly different context. Here, the objective is 
not so much discovering new trends or patterns, but cleaning data stored in 
business databases. For example, when people make manual entries into a 
customer relationship management (CRM) software, there is a lot of scope 
for typographic errors: a salesperson’s name may be spelled “Osterman” in 
several instances (which is perhaps the correct spelling) and “Ostrerman” 
in a few instances, which is a misspelling. Text mining could be used in 
such situations to identify the “right” spelling and suggest it to the entry 
operator to ensure that data consistency is maintained. Similar application 
logic could be used in identifying and streamlining call center service data 
(McKnight, 2005).

Text mining, more than any other technique within data mining, fits the 
“mining” metaphor. Traditionally, mining refers to the process of separating 
dirt from valuable metal and in the case of text mining we attempt to separate 
valuable keywords from a mass of other words (or relevant documents from 

Perhaps the most famous application of text mining is 
IBM’s Watson program, which performed spectacularly 
when competing against humans on the nightly 
game show Jeopardy! How does Watson use text 
mining? Watson has instant access to hundreds of 
millions of structured and unstructured documents, 
including the full content of Wikipedia entries.

When a Jeopardy! question is transcribed to Watson, it 
searches for and identifies candidate documents that 
score a very close match to the words of the question.  
The search and comparison methods it uses are  
similar to those used by search engines, and include 
many of the techniques, such as n-grams and 
stemming, which we discuss in this chapter. Once it 
identifies candidate documents, it again uses other text 
mining (also known as natural language processing 
or NLP) methods to rank them. For example, if the 
answer is, REGARDING THIS DEVICE, ARCHIMEDES 
SAID, “GIVE ME A PLACE TO STAND ON, AND I WILL 
MOVE THE EARTH, a Watson search for this sentence 

in its databases might reveal among its candidate 
documents several with the term “lever.” Watson 
might insert the word “lever” inside the answer text 
and rerun a new search to see if there are other 
documents with the new combination of terms. If 
the search result has many matches to the terms in 
the sentence—as it most likely would in this case—a 
high score is assigned to the inserted term.

If a broad and non-domain-focused program like 
Watson, which relies heavily on text mining and NLP, 
can answer open-ended quiz show questions with 
nearly 100% accuracy, one can imagine how successful 
specialized NLP tools would be. In fact IBM has 
successfully deployed a Watson-type program to help in 
decision making at health care centers (Upbin, 2013).

Text mining also finds applications in numerous business 
activities such as email spam filtering, consumer 
sentiment analysis, and patent mining to name a few. 
We will explore a couple of these in this chapter.

IT IS NLP, MY DEAR WATSON!
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a sea of documents) and use them to identify meaningful patterns or make 
predictions.

9.1 � HOW TEXT MINING WORKS
The fundamental step in text mining involves converting text into semi-struc-
tured data. Once you convert the unstructured text into semi-structured data, 
there is nothing to stop you from applying any of the analytics techniques to 
classify, cluster, and predict. The unstructured text needs to be converted into 
a semi-structured dataset so that you can find patterns and even better, train 
models to detect patterns in new and unseen text. The chart in Figure 9.1 iden-
tifies the main steps in this process at a high level.

We will now examine each of the main processes in detail and introduce some 
terminology and concepts that are necessary. But before we describe these pro-
cesses, we need to define a few core ideas that will be essential.

9.1.1 � Term Frequency–Inverse Document Frequency (TF–IDF)
Consider a web search problem where the user types in some keywords and the 
search engine extracts all the documents (essentially, web pages) that contain 

Collect data

Raw unstructured data
from Websites, emails,

Tweets, etc.

Preprocess data

Convert to a structured
format

Analyze data

Using standard
descriptive or predictive

analytics techniques
such as clustering,
classification, etc.

FIGURE 9.1
A high-level process for text mining.
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these keywords. How does the search engine know which web pages to serve 
up? In addition to using network rank or page rank, the search engine also runs 
some form of text mining to identify the most relevant web pages. Suppose 
for example the user types in the following keywords: “RapidMiner books that 
describe text mining.” In this case, the search engines run on the following 
basic logic:

	 1.	� Give a high weightage to those keywords that are relatively “rare.”
	 2.	� Give a high weightage to those webpages that contain a large number of 

instances of the “rare” keywords.

In the above context, what is a “rare” keyword? Clearly, English words like 
“that,” “books,” “describe,” and “text” possibly appear in a large number of 
web pages, whereas “RapidMiner” and “mining” may appear in a relatively 
smaller number of web pages. (A quick web search returned 382 million 
results for the word “books,” whereas only 74,000 results were returned for 
“RapidMiner” at the time of this writing.) Therefore, these rarer keywords 
would receive a higher rating to begin with according to logic 1 above. Next, 
among all those pages that contain the rare keywords, only those pages that 
contain the largest number of instances of the rare keywords are likely to be the 
most relevant for the user and will receive high weightage according to logic 2 
above. Thus the highest-weighted web pages are the ones for which the product 
of these two weights is the highest. Therefore, only those pages that not only 
contain the rare keywords, but have a high number of instances of the rare 
keywords should appear at the top of the search results.

The technique of calculating this weighting is called TF–IDF, which stands for 
Term Frequency–Inverse Document Frequency.

Calculating TF is very easy: it is simply the ratio of the number of times a key-
word appears in a given document, nk (where k is the keyword), to the total 
number of terms in the document, n:

	TF = nk/n	 (9.1)

Considering the above example, a common English word such as “that” will 
have a fairly high TF score and a word such as “RapidMiner” will have a much 
lower TF score.

IDF is defined as follows:

	IDF = log2 (N/Nk)	 (9.2)

where N is the number of documents under consideration (in a search engine 
context, N is the number of ALL the indexed webpages). For most text min-
ing problems, N is the number of documents that we are trying to mine, and 
Nk is the number of documents thatcontain the keyword, k. Again, a word 
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such as “that” would arguably appear in every document and thus the ratio  
(N/Nk) would be close to 1, and the IDF score would be close to zero for “that.” 
However, a word like “RapidMiner” would possibly appear in a relatively fewer 
number of documents and so the ratio (N/Nk) would be much greater than 1. 
Thus the IDF score would be high for this less common keyword.

Finally, TF–IDF is expressed as the simple product as shown below:

	TF − IDF = nk/n * log2 (N/Nk)	 (9.3)

Going back to the above example, when we multiply the high TF for “that” by 
its corresponding very low IDF, we will get a very low (or zero) TF–IDF whereas 
when we multiply the low TF for “RapidMiner” by its corresponding fairly high 
IDF, we would get a relatively higher TF–IDF.

Typically, TF–IDF scores for every word in the set of documents is calculated 
in the preprocessing step of the three-step process described earlier. Perform-
ing this calculation will help in applying any of the standard data mining 
techniques that we discussed so far in this book. In the following sections 
we will describe additional concepts that are commonly employed in text 
mining.

9.1.2 � Terminology
Consider the following two sentences: “This is a book on data mining” and 
“This book describes data mining and text mining using RapidMiner.. Let us 
suppose our objective is to perform a comparison between them, or a “simi-
larity mapping.” For our purpose, each sentence is one unit of text that needs 
to be analyzed.

These two sentences could be embedded in an email message or in two sep-
arate webpages or in two different text files or could be two sentences in the 
same text file. In the text mining context, each sentence is considered a dis-
tinct document. Furthermore, in the simplest case, words are separated by a 
special character: a blank space. Each word is called a token, and the process of 
discretizing words within a document is called tokenization. For our purpose 
here, each sentence can be considered a separate document, although what is 
considered an individual document may depend upon the context. For now, a 
document here is simply a sequential collection of tokens.

Document 1 This is a book on data mining.
Document 2 This book describes data mining and text mining using  

RapidMiner.

We can impose some form of structure on this raw data by creating a matrix 
where the columns consist of all the tokens found in the two documents and 
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the cells of the matrix are the counts of the number of times a token appears, 
as shown in Table 9.1.

Each token is now an attribute in standard data mining parlance and each 
document is an example. We therefore have a structured example set, to use 
standard terminology. Basically, unstructured raw data is now transformed 
into a format that is recognized, not only by the human users as a data table, 
but more importantly by all the machine learning algorithms which require 
such tables for training. This table is called a document vector or term document 
matrix (TDM) and is the cornerstone of the preprocessing required for text 
mining. Suppose we add a third statement, “RapidMiner is offered as an open 
source software program.” This new document will increase the number of 
rows of our matrix by one (Document 3); however it increases the number of 
columns by seven (seven new words or tokens were introduced). This results 
in zeroes being recorded in nine other columns for row 3. As we add more new 
statements that have very little in common, we will end up with a very sparse 
matrix.

Note that we could have also chosen to use the term frequencies for each token 
instead of simply counting the number of occurrences and it would still be a 
sparse matrix. We can get TF by dividing each row of Table 9.1 by number of 
words in the row (document). This is shown in Table 9.2.1

Similarly, we could have also chosen to use the TF–IDF scores for each term to 
create the document vector. This is also shown in Figure 9.2.

One thing to notice in the two sample text documents above was the occur-
rence of common words such as “a,” “this,” “and,” and other similar terms. 
Clearly in larger documents we would expect a larger number of such terms 
that do not really convey specific meaning. Most grammatical necessities such 
as articles, conjunctions, prepositions, and pronouns may need to be filtered 
before we perform additional analysis. Such terms are called stopwords and usu-
ally include most articles, conjunctions, pronouns, and prepositions. Stopword 
filtering is usually the second step that follows immediately after tokenization. 
Notice that our document vector has a significantly reduced size after applying 
standard English stopword filtering (see Figure 9.3).

In addition to filtering standard stopwords, we may also need to filter out some 
specific terms. For example, in analyzing text documents that pertain to the 
automotive industry, we may want to filter away terms that are common to this 

1RapidMiner does a “double normalization” while calculating the TF scores. For example, in the case of 
Document 1, the TF score for the term “data” would be (0.1428)/  
= (0.1428)/  = 0.3779 and so on for the other terms. This change in TF score calculation is 
reflected in the TF–IDF score. The double normalization makes it easy to apply algorithms such as SVM.



Table 9.1  Building a Matrix of Terms from Unstructured Raw Text

this is a book on data mining describes text rapidminer and using

Document 1 1 1 1 1 1 1 1 0 0 0 0 0

Document 2 1 0 0 1 0 1 2 1 1 1 1 1

Table 9.2  Using Term Frequencies Instead of Term Counts in a TDM

this is a book on data mining describes text rapidminer and Using

Docu-
ment 1

1/7 = 
0.1428

0.1428 0.1428 0.1428 0.1428 0.1428 0.1428 0 0 0 0 0

Docu-
ment 2

1/10 = 
0.1

0 0 0.1 0 0.1 0.2 0.1 0.1 0.1 0.1 0.1



282 CHAPTER 9:  Text Mining

industry such as “car,” “automobile,” “vehicle,” and so on. This is generally 
achieved by creating a separate dictionary where we define these context-spe-
cific terms and then apply term filtering to remove them from our data. (Lexical 
substitution is the process of finding an alternative for a word in the context of a 
clause and is used to align all the terms to the same term based upon the field 
or subject which is being analyzed—this is especially important in areas with 
specific jargon, for example, in clinical settings.)

We may encounter words such as “recognized,” “recognizable,” or “recog-
nition” in different usages, but contextually they may all imply the same 
meaning. For example, “Einstein is a well-recognized name in physics” or “The 
physicist went by the easily recognizable name of Einstein” or “Few other phys-
icists have the kind of name recognition that Einstein has.” The so-called root 
of all these highlighted words is “recognize.” By reducing terms in a docu-
ment to their basic stems, we can simplify the conversion of unstructured text 
to structured data because we now only take into account the occurrence of 
the root terms. This process is called stemming. The most common stemming 
technique for text mining in English is the Porter method (Porter, 1980). 
Porter stemming works on a bunch of rules where the basic idea is to remove 
and/or replace the suffix of words. For example, one rule would be “Replace 
all terms which end in ‘ies’ by ‘y,’” such as replacing the term “anomalies” 
with “anomoly”. Similarly, another rule would be to stem all terms ending in 
“s” by removing the “s,” as in “algorithms” to “algorithm.” While the Porter 
stemmer is very efficient, it can make mistakes that could prove costly. For 
example, “arms” and “army” would both be stemmed to “arm,” which would 
result in somewhat different contextual meaning. There are other stemmers 
available; which one you choose is usually guided by experience in your 
domain. Stemming is usually the next process step following term filtering. 
(A word of caution: stemming is completely dependent upon the human lan-
guage being processed as well as the period of the language being processed. 

FIGURE 9.2
Calculating TF–IDF scores for the sample TDM.

FIGURE 9.3
Stopword filtering reduces the size of the TDM significantly.
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Historical usage varies so widely that comparing text across generations—
Shakespeare to present-day literature for instance—can raise concerns.)

There are families of words in the spoken and written language that typically go 
together. For example, the word “Good” is usually followed by either “Morning,” 
“Afternoon,” “Evening,” “Night,” or in Australia, “Day.” Grouping such terms, 
called n-grams, and analyzing them statistically can present new insights. Search 
engines use word n-gram models for a variety of applications, such as automatic 
translation, identifying speech patterns, checking misspelling, entity detection, 
information extraction, among many different use cases. Google has processed 
more than a trillion words (1,024,908,267,229 words back as far back as 2006) 
of running text and has published the counts for all 1,176,470,663 five-word 
sequences that appear at least 40 times (Franz, 2006). While most text mining 
applications do not require 5-grams, bigrams and trigrams are quite useful. The 
final preprocessing step typically involves forming these n-grams and storing 
them in our document vector. Also, most algorithms providing n-grams become 
computationally expensive and the results become huge so in practice the 
amount of “n” will vary based upon the size of the documents and the corpus.

Figure 9.4 shows a TF-based document vector for bigrams (n = 2) from our 
examples and as you can see, terms like “data mining” and “text mining” and 
“using RapidMiner” can be quite meaningful in this context. Table 9.3 summa-
rizes a typical sequence of preprocessing steps that will convert unstructured 
data into a semi-structured format.

Usually there is a preprocessing step before tokenization such as removing spe-
cial characters, changing the case (upcasing and downcasing), or sometimes 
even performing a simple spell check beforehand. Data quality in text mining 
is just as important as in other areas.

FIGURE 9.4
Meaningful n-grams show higher TF–IDF scores.

Table 9.3  A Typical Sequence of Preprocessing Steps to Use in Text Mining

Step Action Result

1 Tokenize Convert each word or term in a document into a distinct attribute
2 Stopword removal Remove highly common grammatical tokens/words
3 Filtering Remove other very common tokens
4 Stemming Trim each token to its most essential minimum
5 n-grams Combine commonly occurring token pairs or tuples (more than 2)
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9.2 � IMPLEMENTING TEXT MINING WITH CLUSTERING 
AND CLASSIFICATION

We have introduced a few essential concepts that would be needed for a basic 
text mining project. In the following sections, we will examine two case studies 
that apply text mining. In the first example, we will take several documents 
(web pages) and group keywords found in them into similar clusters. In the 
second example, we will attempt to perform a blog gender classification. We start 
with several blogs (documents) written by men and women authors, to be 
used as training data. Using the article keywords as features, we will train sev-
eral classification models, including a couple of SVMs, to recognize stylistic 
characteristics of authors and classify new unseen blogs as belonging to one of 
the two author classes (male or female).

9.2.1 � Case Study 1: Keyword Clustering
In this first example, we will introduce some of the web mining features of 
RapidMiner and then create a clustering model with keyword data mined from 
a website. The objective of this case is to scan several pages from a given web-
site and identify the most frequent words within these pages that also serve to 
characterize each page, and then to identify the most frequent words using a 
clustering model. This simple example can be easily extended to a more com-
prehensive document-clustering problem where we would use the most com-
mon words occurring in a document as flags to group multiple documents. The 
predictive objective of this exercise is to then use the process to identify any 
random webpage and determine if the page pertains to one of the two catego-
ries which the model has been trained to identify.

The site (http://www.detroitperforms.org) we are looking into is hosted by a 
public television station and is meant to be used as a platform for reaching out 
to members of the local community who are interested in the arts and culture. 
The site serves as a medium for the station to not only engage with community 
members, but also to eventually aid in targeted marketing campaigns meant to 
attract donors to public broadcasting. The site has pages for several related cate-
gories: Music, Dance, Theatre, Film, and so on. Each of these pages contains arti-
cles and events related to that category. Our goal is to characterize each page on 
the site and identify the top keywords that appear on each page. To that end, we 
will crawl each category page, extract the content, and convert the information 
into a structured document vector consisting of keywords. Finally, we will run a 
k-medoids clustering process to sort the keywords and rank them. Medoid clus-
tering is similar to the k-means clustering described in Chapter 7. A “medoid” 
is the most centrally located object in a cluster (Park, 2009). K-medoids are less 
susceptible to noise and outliers when compared to k-means. This is because 

http://detroitperforms.org
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k-medoids tries to minimize dissimilarities rather than Euclidean distances, 
which is what k-means does.

Before we begin webpage clustering in RapidMiner, you need to make sure that 
the web mining and text mining extensions are installed. (This is easily done 
by going to Help → Updates and Extensions on the main menu bar.) RapidMiner 
provides three different ways to crawl and get content from websites. The Crawl 
Web operator will allow setting up of simple crawling rules and based on these 
rules will store the crawled pages in a directory for further processing. The Get 
Page operator retrieves a single page and stores the content as an example set. 
The Get Pages operator works similarly, but can access multiple pages identified 
by their URLs contained in an input file. We will use the Get Pages operator in 
this example. Both of the Get Page(s) operators allow the choosing of either the 
GET or POST HTTP request methods for retrieving content.2

Step 1: Gather Unstructured Data
The first step in this process is to create an input text file containing a list of 
URLs to be scanned by the Get Pages operator. This is specified in the Read 
CSV (renamed in the process shown in Figure 9.6a to Read URL List) operator, 
which initiates the whole process. The text file consists of three lines: a header 
line that is needed for the link attribute parameter for Get Pages and two lines 
containing the two URLs that we are going to crawl, as shown in Figure 9.5 
below.3 The first URL is the “Dance” category page and the second one is the 
“Film” category page on the website. Save the text file as “pages.txt” as shown 
in the figure.

The output from the Get Pages operator consists of an example set that will 
contain two main attributes: the URL and extracted HTML content. Addition-
ally it also adds some metadata attributes that are not needed in this example, 

2For more information on the differences between the two methods, and when to use which type of 
request, refer to the tutorials on www.w3schools.com.
3Be aware that websites may frequently change their structure or content or be taken down altogether. 
The results shown here for this example were obtained when the website listed was crawled at the time 
of writing. Your results may differ depending upon when the process is executed.

FIGURE 9.5
Creating a URL read list.
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such as content length (characters), date, and so on. We can filter out these 
extra attributes using the Select Attributes operator.

Step 2: Data Preparation
Next, connect the output from this to a Process Documents from Data operator. 
This is a nested operator, which means this operator contains an inner sub-
process where all the preprocessing takes place. The first step in this prepro-
cessing is removing all the HTML tags and only preserving the actual content. 
This is enabled by the Extract Content operator. Put this operator inside the 
Process Documents from Data operator and connect the different operators 
as shown in Figures 9.6a and 9.6b. Refer to Table 9.3 from earlier to see 
which operators to use. The inset shows the operators inside the nested Pro-
cess Documents from Data operator. In this case, we will need to use the word 
occurrences for the clustering. So you need to select Term Occurrences for 
the vector creation parameter option when configuring the Process Documents 
from Data operator.

Step 3: Apply Clustering (Descriptive Analytics) Technique
The output from the Process Documents from Data operator consists of (1) a 
word list and (2) a document vector or TDM. The word list is not needed 
for clustering, however the document vector is. Recall that the difference 
between the two is that in the document vector, each word is considered an 
attribute and each row or example is a separate document (in this case the 
web pages crawled). The values in the cells of the document vector can of 
course be word occurrences, word frequencies, or TF–IDF scores, but as noted 
in step 2, in this case the cells will have word occurrences. The output from 
the Process Documents from Data operator is filtered further to remove attri-
butes that are less than 5 (that is all words that occur less than five times in 
both documents). Notice that RapidMiner will only remove those attributes 
(words) which occur less than five times in both documents—for example the 
word “dance” appears only two times in the Film category, but is the most 
common word in the Dance; it is not and should not be removed! Finally 
this cleaned output is fed into a k-medoids clustering operator, which is con-
figured as shown in Figure 9.6c.

Upon running the process, RapidMiner will crawl the two URLs listed and 
execute the different operations to finally generate two clusters. To view these 
clustering outputs, you can select either the Centroid Table or Centroid Plot 
views in the Cluster Model (Clustering) results tab, which will clearly show 
the top keywords from each of the two pages crawled. In Figure 9.7, we see the 
top few keywords that characterize each cluster. One can then use this model 
to identify if the content of any random page would belong to either one of 
the categories.
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FIGURE 9.6a
Overall process of creating keyword clustering from websites.

FIGURE 9.6b
Configuring the nested preprocessing operator: Process Documents from Data.

9.2.2 � Case Study 2: Predicting the gender of blog authors
The objective of this case study is to attempt to predicting the gender of blog 
authors based on the content of the blog.



Step 1: Gather Unstructured Data
The data set for this case study4 consists of more than 3,000 individual blog 
entries (articles) by men and women from around the world (Mukherjee, 
2010). The data is organized into a single spreadsheet consisting of 3,227 rows 
and two columns as shown in the sample in Table 9.4. The first column is the 
actual blog content and the second column is the author’s gender, which has 
been labeled.

For the purpose of this case study, we will split the raw data into two halves: 
the first 50% of the data is treated as training data with known labels and the 
remaining 50% is set aside to verify the performance of the training algorithm.

4A compressed version of this data can be downloaded from the Opinion Mining, Sentiment Analysis 
and Opinion Spam Detection website (http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html). The 
data set is called Blog Author Gender Classification dataset associated with the paper (Mukherjee and Liu, 
EMNLP-2010). This site is maintained by Prof. Bing Liu of the University of Illinois at Chicago. This 
site contains a lot of relevant information related to text mining and sentiment analysis, in addition to 
several other useful data sets.

FIGURE 9.6c
Configuring the k-medoids operator.
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FIGURE 9.7
Results of the website keyword clustering process.



Table 9.4  Raw Data for the Blog Classification Study

BLOG GENDER

This game was a blast. You (as Drake) start the game waking up in a train that is dangling over the side of a cliff. You have to 
climb up the train car, which is slowly teetering off the edge of the cliff, ready to plummet miles down into a snowy abyss. From 
the snowy beginning there are flashbacks to what led Drake to this predicament. The story unfolds in a very cinematic manner, 
and the scenes in between levels, while a bit clichéd by Hollywood standards, are still just as good if not better than your average 
brainless Mel Gibson or Bruce Willis action movie. In fact, the cheese is part of the fun and I would venture to say it's intentional.

M

My mother was a contrarian, she was. For instance, she always wore orange on St. Patrick's Day, something that I of course did 
not understand at the time, nor, come to think of it do I understand today. Protestants wear orange in Ireland, not here, but I'm 
pretty sure my mother had nothing against the Catholics, so why did she do it? Maybe it had to do with the myth about Patrick 
driving the snakes, a.k.a. pagans, out of Ireland. Or maybe it was something political. I have no idea and since my mother is long 
gone from this earth, I guess I'll never know.

F

LaLicious Sugar Soufflé body scrub has a devoted following and I now understand why. I received a sample of this body scrub 
in Tahitian Flower and after one shower with this tub of sugary goodness, I was hooked. The lush scent is deliciously intoxicating 
and it ended up inspiring compliments and extended sniffing from both loved ones and strangers alike. Furthermore, this scrub 
packs one heck of a punch when it comes to pampering dry skin. In fact, LaLicious promises that this body scrub is so rich that it 
will eliminate the need for applying your post-shower lotion. This claim is true — if you follow the directions.

F

Stopped by the post office this morning to pick up a package on my way to the lab. I thought it would be as good a time as 
any to clean up my desk and at the very least make it appear that I am more organized than I really am (seriously, it's a mess). 
It's pretty nice here on the weekends, it's quiet, there's less worry of disturbing undergrad classes if I do any experiments in the 
daytime.
Anyway, it turns out the t-shirt I ordered from Concrete Rocket arrived! Here's how the design looks:

M

See here's the thing: Men have their neat little boxes through which they compartmentalize their lives. Relationship over? Oh, I'll 
just close that box. 
It's not that easy for women. 
Our relationships are not just a section of our lives–they run through the entire fabric, a hot pink thread which adds to the mosaic 
composing who we are. Take out a relationship and you grab that thread and pull. Have you ever pulled a thread on a knit 
sweater? That's what it's like. The whole garment gets scrunched and disfigured just because that one piece was removed. And 
then you have to pull it back apart, smooth it out, fill in the gaps. See here's the thing: men have their neat little boxes through 
which they compartmentalize their lives. Relationship over? Oh, I'll just close that box. It's not that easy for women.

F

I had pretty bad vision since I was in 3rd grade. About 5 years ago, after watching many people around me get Lasik, I decided 
to take the plunge. Because this was an elective surgery that in rare cases, could cause damage to my eyes, I decided to find 
the absolute best doctor for the job. I chose Dr Coleman Kraff and he was amazing to watch. Very confident, poised, fast, and 
focused.... well like a laser.

M



Then there's my work life. I had an incredible review from my boss 2 weeks ago, and have been slowly adding more and more to 
my occupational plate as opportunities have been presenting themselves. I'm now going to be the head coach for 7th/8th grade 
girls' volleyball in the fall. I'm working at the Harlem School of the Arts this summer, just two mornings a week, but they've tenta-
tively asked me if I'd be interested in working their Saturday program during the school year. I have three new piano students for 
the fall – kids who are my students at school and will now also be my private piano students. I had my first lesson today with one 
of them, and it was incredible.

F

We had problems in the past with contacts due to dryness and the hassle of always taking them out when I sleep. With Acuvue 
Oasys soft contact lenses I've had more comfort then ever. The dryness is gone. I can wear them longer. I can even sleep in them 
and not have to take them out every night. I just put in drops when I wake up and I'm good for the day. It's an ideal product for 
someone who is always on the go and has no energy to do anything but go to bed in the evening. At an affordable price you can't 
beat them, especially when you use up a new box less often.

F

This camcorder is really good for the price and it has an easy button for people who are not good with camcoders. There is also a 
touch screen in the camcorder ang you can turn the screen so you can see yourself. It also has a built in lens cover and you don't 
have to worry about losing it.

M

At the time Debbie and I moved to Rapid City our family started to grow by one boy and four girls. I'd like to introduce You to my 
"little kids". On the top row starting left to right, my son Brian and my daughter Leslie. On the bottom row; left-to-right, my  
youngest daughter Shelley, my eldest daughter Christy and my next eldest daughter Suzanne.
They are all adults and they all live in Rapid City.

M

Ideally, the process for buying a laptop would involve a single question: "Which laptop should I buy?" The answer would then 
spring forth from the heavens or your favorite technology Web site. Unfortunately, finding the right laptop for your budget and 
needs involves answering not one but a series of questions. Fear not, laptop buyer, we know which questions to ask, the answers 
to those questions, along with the current market trends and where laptops are headed.

M

Ok, so how stinkin' cute IS this bunny?? I saw an adorable Easter sign at Hobby Lobby a few weeks ago and thought it would 
make a great card. I can't find the adapter that allows me to download photos from my camera phone, so I can't show you the 
inspiration piece. But it was an Easter bunny peeking over the top of an Easter egg.

F

Slept until 11am. Time change seems to have no effect. In fact filled my tires with air and went for a bike ride around the complex 
like 5 times. Legs were hurting so stopped and came inside. Time change no effect as of yet but being cautious. Feeling pretty up 
and positive. Need to get gas for car and then run a few errands. Laundry is going to wait again. Goal for next week is to complete 
all of it. It is at least in a semi organized piles and ready to be washed. Need to find a laundry shop to complete. Also need to 
register for IML volunteer and start working on getting taxes filed and the $5,000.00 medical bill from last hospitalization. That is 
approximate including Doctors which I have yet to receive. Funny they are charging me over $3,000 for the CPAP. that is the price 
of a new machine. I plan on fighting that charge to see what happens. Will be using health advocate to see what, if anything can 
be done. Last night did not sleep right away so created contracts for my support system alerting them if what they should be on 
the look out for and what actions to take if they see me doing those actions.

M

Continued



BLOG GENDER

We celebrated St. Patty's Day with Ethan, Carys, and Molly and..... a dinner made 'o green! We had green pancakes with sham-
rock-shaped whip cream on top, green vanilla yogurt (green food coloring and I were special friends today) topped with green 
sprinkles, and honey dew. For dessert, we had a magically delicious treat I referred to as Pots o' Gold - halved orange peels filled 
with "gold" (yellow jello squares) and garnished with gold coins (chocolate Easter candy)! As for beverages, we had Sprite in clear 
cups with green Sprite ice cubes to color our drinks. It really was so much fun to get into the spirit of St. Patty's Day.

F

I'm so excited about the gorgeous weather we've been having lately. I feel like spring has crept up early, quickly and unexpectedly 
this year. But maybe that's just because I was prepared for it to be especially late in coming up here in Sudbury. I'm not getting my 
hopes up though that it's here to stay, because we'll likely have some more winter before it's gone for good.

F

I own a 9 1/2 year old German Shepherd mix. We believe his father was a black lab with chow mix. His mother was a full-blooded 
German Shepherd. Fred is a great dog. He weighs 110 lbs. So you can't ever pick him up and his meds cost a fortune, but he's 
worth every time. I watch a lot of Court TV and I feel much more secure having Fred in the house with me!He's settled down a 
lot over the years. He used to be much more high strung and jumped on people, etc. Now he just barks a lot. He's definitely the 
alpha dog of our family.

F

Yesterday we had dense fog, heavy rain last night and fog again this morning. It is supposed to transition (whatever happened to 
just saying "change"?) to rain beginning around ten this morning. And yes, today is the day we load carts onto the Bookmobile, 
unload them, reload them, unload them, reload them – all day long. This will be my first experience dealing with that in the rain. 
I understand that we have some flimsy tarps to put over the carts, but the word is that they are not all that helpful. At least it is 
supposed to get up to about 53 (11.6 C).

M

Apparently if the rain we are getting this weekend were snow, it would be about three feet deep. It is also pretty windy. Therefore 
the streets are awash with dead umbrellas rolling like tumbleweed across streets and frightening the dogs. The corpses are flung 
every which way including upside down. A few are neatly disposed of in garbage receptacles. Others look positively dangerous.

F

Table 9.4  Raw Data for the Blog Classification Study—Cont’d
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While developing models involving large amounts of data, which is com-
mon with unstructured text analysis, it is a good practice to divide the pro-
cess into several distinct processes and store the intermediate data, models, 
and results from each process for recall at a later stage. RapidMiner facili-
tates this by providing special operators called Store and Retrieve. The Store 
operator stores an IO Object in the data repository and Retrieve reads an 
object from the data repository. The use of these operators is introduced in 
the following sections.

Step 2: Data Preparation
Once the data is downloaded and uncompressed, it yields a single MS Excel 
file, which can then be imported into the RapidMiner database using the Read 
Excel operator. The raw data consists of 290 examples that do not have a label 
and one example that has no blog content but has a label! This needs to be 
cleaned up. It is easier to delete this entry in the raw data—simply delete the 
row (#1523) in the spreadsheet that contains this missing entry and save the 
file before reading it into RapidMiner. Also make sure that the Read Excel oper-
ator is configured to recognize the data type in the first column as “text” and 
not polynominal (default) as shown in Figure 9.8. Connect the output from 
Read Excel to a Filter Examples operator, where will then remove the entries 
with missing labels. (If you are so inclined, you may want to store these entries 
with missing labels for use as testing samples—you can accomplish this with 
another Filter Examples, but by checking Invert Filter box and then storing the 
output. In this case however, we will simply discard examples with missing 
labels.) We can now separate the cleaned data with a 50/50 split using a Split 
Data operator. Save the latter 50% testing data (1,468 samples) to a new file 
with a Write Excel operator and pass the remaining 50% training portion to a 
Process Documents from Data operator.

This, as we now know, is a nested operator where all the preprocessing hap-
pens. Recall that this is where the conversion of unstructured data into a 
structured format will take place. Connect the different operators within as 
shown in Figure 9.9a. The only point to note here is that you will need a 
Filter Stopword (Dictionary) operator to remove any “nbsp” (“&nbsp” is used 
to represent a nonbreaking space) terms that may have slipped into the con-
tent. Create a simple text file with this keyword inside it and let RapidMiner 
know that this dictionary exists by properly configuring the operator. To con-
figure the Process Documents from Data operator, use the options as shown in  
Figure 9.9b.

The output from the process for step 2 consists of the document vector and a 
word list. While the word list may not be of immediate use in the subsequent 
steps, it is a good idea to store this along with the very important document 
vector. The final process is shown in Figure 9.9c.



FIGURE 9.8
Properly configuring the Read Excel operator to accept text (not polynomial).
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FIGURE 9.9b
Configuring the preprocessing operator.

FIGURE 9.9a
Preprocessing text data using the Process Documents from Data operator.
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FIGURE 9.9c
Overall process for blog gender classification.

Step 3.1: Identify Key Features
The document vector that is the result of the process in step 2 is a structured 
table consisting of 2,055 rows—one for every blog entry in the training set—
and 2,815 attributes or columns—each token within an article that meets the 
filtering and stemming criteria defined by operators inside Process Documents is 
converted into an attribute. Training learning algorithms using 2,815 features 
or variables is clearly an onerous task. The right approach is to further filter 
these attributes by using feature selection methods.

We will employ two feature selection methods using the Weight by Information 
Gain and Weight by SVM operators that are available. Weight by Information 
Gain (more details in Chapter 12 Feature Selection on this operator) will rank 
a feature or attribute by its relevance to the label attribute (in this case, gen-
der) based on the information gain ratio and assigns weights to them accord-
ingly. Weight by SVM will set the coefficients of the SV hyperplane as attribute 
weights. Once we rank them using these techniques, we can select only a hand-
ful of attributes (for example, the top 20) to build our models. Doing so will 
result in a reasonable reduction in modeling costs.
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The results of this intermediate process will generate two weight tables, one 
corresponding to each feature selection method. We start the process by retriev-
ing the document vector saved in step 2 and then end the process by storing the 
weight tables for use in step 3.2 (see Figure 9.10).

In the paper by Mukherjee and Liu (Mukherjee, 2010) from which this data 
set comes, they demonstrate the use of several other feature selection meth-
ods, including a novel one developed by the authors that is shown to yield a 
much higher prediction accuracy than the stock algorithms (such as the ones 
we demonstrate here).

Step 3.2: Build Predictive Models
Once we have the document vector and attribute weights, we can experiment 
using several different machine learning algorithms to understand which give 
the best accuracy. The process illustrated in Figures 9.11a and b will generate the 
models and store them (along with the corresponding performance results) for 
later application. This is one of the key strengths of RapidMiner: once we have 
built up the necessary data for predictive modeling, switching back and forth 
between various algorithms requires nothing more than dragging and drop-
ping the needed operators and making the connections. As seen in Figure 9.11b,  
we have five different algorithms nested inside the X-Validation operator and 
can conveniently switch back and forth as needed. Table 9.5 shows that the 
LibSVM(linear) and W-Logistic operators (Available through Weka extension 
for RapidMiner. Go to Help > Updates and Extensions) seem to give the best 

FIGURE 9.10
Using feature selection methods to filter attributes from the TDM.
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FIGURE 9.11a
Training and testing predictive models for blog gender classification.

FIGURE 9.11b
Switching between several algorithms.
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Table 9.5  Comparing the Performance of Different Training Algorithms for 
Blog Gender Classification

Algorithm Class Recall (M) Class Recall (F) Accuracy

LibSVM (linear) 87 53 72
W-Logistic 85 58 73
Naïve Bayes 86 55 72
SVM (polynomial) 82 42 63

performance. Keep in mind that these accuracies are still not the highest and 
are in line with the performances reported by Mukherjee and Liu in their paper 
for generic algorithms.

To improve upon these, we may need to further optimize the best performers 
so far by nesting the entire validation process within an optimization operator. 
This is described in the chapter 13, in the section on optimization.

Step 4.1: Prepare Test Data for Model Application
Going back to the original 50% of the “unseen” data that was saved for testing pur-
poses, we can actually evaluate the real-world performance of the best algorithm 
in classifying blogs by author gender. However, keep in mind that we cannot use 
the raw data that we set aside as is (what would happen if you did?). We need to 
also convert this raw test data into a document vector first. In other words, we need 
to repeat the step 2 process (without the filtering and split data operators) on the 
50% of data that was set aside for testing. The Process Documents from Data opera-
tor can be simply copied and pasted from the process in step 2. (Alternatively, we 
could have preprocessed the entire dataset before splitting!) The document vector 
is stored for use in the next step. This process is illustrated in Figure 9.12.

Step 4.2: Applying the Trained Models to Testing Data
This is where the rubber hits the road! The last step will take any of the saved 
models created in step 3.2 and the newly created document vector from step 
4.1 and apply the model on this test data. The process is shown below in  
Figures 9.13a and b. One useful operator to add is the Set Role operator, which 
will be used to indicate to RapidMiner the label variable. Doing so will allow us 
to sort the results from the Apply Model by “Correct Predictions” and “Wrong 
Predictions” using the View Filter in the Results perspective as shown here.

When you run this process you will find that the LibSVM (linear) model can 
correctly predict only 828 of the 1,468 examples, which translates to a poor 
56% accuracy! The other models fare worse. Clearly the model and the pro-
cess are in need of optimization and further refinement. Using RapidMiner’s 



FIGURE 9.12
Preparing the “unseen” data for model deployment.

FIGURE 9.13a
Applying the models built in step 3 on the unseen data.

CHAPTER 9:  Text Mining300



FIGURE 9.13b
The results view.
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built-in optimization operators, one can easily improve upon this baseline 
accuracy. A discussion about how to use the optimization operators in general 
is provided in Chapter 13 Getting Started with RapidMiner. The truly adven-
turous can implement the Mukherjee and Liu algorithm for feature selection in 
RapidMiner based on the instructions given in their paper!

CONCLUSION
Unstructured data, of which text data is a major portion, appears to be dou-
bling in volume every three years (Mayer-Schonberger, 2013). The ability 
to automatically process and mine information from such digital data will 
become an important skill in the future. These techniques can be used to clas-
sify and predict just as the other techniques throughout the book, except we 
are now working on text documents and even voice recordings that have been 
transcribed to text.

In this chapter we explained how unstructured data can be mined using any of 
the available algorithms presented in this book. The key to being able to apply 
these techniques is to convert the unstructured data into a semi-structured for-
mat. We introduced a high-level three-step process that will enable this. We 
discussed some key tools for transforming unstructured data, such as tokeniza-
tion, stemming, n-gramming, and stopword removal. We then discussed how 
concepts such as TF–IDF will allow us to make the final transformation of a 
corpus of text to a matrix of numbers, which can be worked upon by the stan-
dard machine learning algorithms. Finally, we presented a couple of real-world 
examples, which will allow you to explore the exciting world of text mining 
using RapidMiner.

REFERENCES
Cutting, D. K. (1992). Scatter/gather: A cluster-based approach to browsing large document col-

lections. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, 318–329 Copenhagen.

Franz, A. A. (2006, August 3). All our N-gram are Belong to You. Retrieved November 1, 2013, 
from Research Blog, http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-be-
long-to-you.html.

Hearst, M. (June 20–26, 1999). Untangling Text Data MiningProceedings of Association for Computa-
tional Linguistics, 37th Annual Meeting 1999. University of Maryland.

International Monetary Fund (n.d.). Retrieved from http://www.imf.org/external/pubs/ft/
weo/2012/02/weodata/index.aspx.

Mayer-Schonberger, V. A. (2013). Big Data: A Revolution That Will Transform How We Live, Work and 
Think. London: John Murray and Co.

McKnight, W. (2005, January 1). Text Data Mining in Business Intelligence. Retrieved November 
1, 2013, from Information Management, http://www.information-management.com/
issues/20050101/1016487-1.html#Login.

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx
http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx
http://www.information-management.com/issues/20050101/1016487-1.html#Login
http://www.information-management.com/issues/20050101/1016487-1.html#Login


303References

Park, H. S., Jun, C. H. (2009). A simple and fast algorithm for K-medoids clustering. Expert Systems 
with Applications. 36(2), 3336–3341.

Porter, M. F. (1980). An algorithm for suffix stripping. Program. 14(3), 130–137.

Mukherjee, A. L. (2010). Improving Gender Classification of Blog Authors. Proceedings of Conference 
on Empirical Methods in Natural Language Processing (EMNLP-10) Cambridge, MA.

Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie or Die. Hoboken, 
NJ: John Wiley and Sons.

Upbin, B. (2013, February 8). IBM’s Watson gets its first piece of business in Healthcare. Forbes.



Predictive Analytics and Data Mining. http://dx.doi.org/10.1016/B978-0-12-801460-8.00010-0
Copyright © 2015 Elsevier Inc. All rights reserved.

305

CHAPTER 10

Time series forecasting is one of the oldest known predictive analytics tech-
niques. Strictly speaking, it has existed and been in widespread use even before 
the term “predictive analytics” was ever coined!

Up to this point in this book, supervised model building was about collect-
ing data from several different attributes of a system and using these to fit a 
“function” to predict the desired quantity or target variable. For example, if 
the “system” was a housing market, the attributes may have been the price of 
a house, its square footage, number of bedrooms, number of floors, age, and 
so on. A multiple linear regression model or a neural network model could be 
built to predict the price (target) variable given the other (predictor) variables. 
Similarly, purchasing managers may use data from several different commod-
ity prices that influence the final price of a product to “model” the cost of the 
product. The common thread among these predictive models is that predic-
tors or independent variables that potentially influence a target (price or prod-
uct cost) are used to predict that target variable. The objective in time series 
forecasting is slightly different: use historical information about a particular 
quantity to make forecasts about value of the same quantity in the future. In 
general, there are two important differences between time series analysis and 
other supervised predictive models.

First, in time series analysis we are concerned with forecasting a specific vari-
able, given that we know how this variable has changed over time in the past. 
In all other predictive models discussed so far, the time component of the data 
was either ignored or was not available. Such data are known as cross-sectional 
data (Figure 10.1).

Second, we may not be interested in (or might not even have) data for other 
attributes that could potentially influence the target variable. In other words, 
independent or predictor variables are not strictly necessary for univariate time 
series forecasting (but are strongly recommended for multivariate time series).

Such time series forecasting methods are called data-driven forecasting meth-
ods, where there is no difference between a predictor and a target. The predictor 

Time Series Forecasting
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is also the target variable. Techniques such as time series averaging or smooth-
ing are considered data-driven approaches to time series forecasting.

However, there is also another class of time series forecasting techniques that 
are known as model-driven forecasting methods. Model-driven techniques are 
similar to “conventional” predictive models, which have independent and 
dependent variables, but with a twist: the independent variable is now time. 
The simplest of such methods is of course a linear regression model of the form

	y (t) = a + b * t	 (10.1)

where y(t) is the value of the target variable at time t. Given a training set, we esti-
mate the values of coefficients a and b to forecast future y values. Model-driven 
techniques can get pretty complicated in the selection of the type of function. 
Commonly used functions are exponential, polynomial, and power law func-
tions. Most people are familiar with the trend line function in spreadsheet pro-
grams, which offer several different function choices. In a nutshell, a model-driven 
time series forecast differs from a regular function-fitting predictive model in the 
choice of the independent variable.

A more sophisticated model-driven technique is based on the concept of auto-
correlation. Autocorrelation refers to the fact that data from adjacent time 
periods may be correlated. The most well known among these techniques is 
ARIMA, which stands for autoregressive integrated moving average; this will be 
briefly covered in later sections. We will now describe the concepts of time 
series forecasting using data-driven and model-driven techniques.

Time series analysis can also be broadly classified into descriptive modeling, 
called time series analysis, and predictive modeling, called time series forecasting. 
Both of these rely on a technique called decomposition, where the data is split into 
a trend component, a seasonal component, and a noise component. The trend 

FIGURE 10.1
Cross-sectional data is a subset of time series data. (Image modified from original sourced from 
Wikimedia Commons. Creative Commons Attribution.)
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and seasonality are predictable (and are called systematic components) whereas 
the noise, by definition, is random (and is called the nonsystematic component). 
The discussions in this chapter focus only on time series forecasting techniques. 
For a complete description of time series decomposition, the reader is referred to 
books dedicated to time series analysis such as Hyndman (2014).

A very common application of time series is in forecasting 
demand for a product. A manufacturing company makes 
anticorrosion wax tapes for use in gas and oil pipelines. 
The company makes more than a dozen varieties of wax 
tape products using a handful of assembly lines. The 
demand for these products varies depending upon several 
factors. For example, routine pipeline maintenance is 
typically done during warm weather seasons. So there 
could be a seasonal spike in the demand. Also over 
the last several years, growth in emerging economies 
has meant that the demand for their products also 
has been growing. Finally, any upcoming changes in 
pricing (which the company may announce ahead of 
time) may also trigger stockpiling by their customers, 
resulting in sudden jumps in demand. So, there can be 
both trend and seasonality factors (see Figure 10.2).

Their general manager needs to be able to predict demand 
for their products on a monthly, quarterly, and annual 
basis so that he can plan the production using their limited 
resources and his department’s budget. He makes use 
of time series forecasting models to predict the potential 
demand for each of their product lines. By studying the 
seasonal patterns and growth trends, he can better 
prepare their production lines. For example, studying 
seasonality in the sales for the #2 wax tape, which is 
heavily used in cold climates, reveals that March and April 
are the months with the highest number of orders placed 
as customers buy them ahead of the maintenance seasons 
starting in the summer months. So the plant manager can 
dedicate most of their production lines to manufacturing 
the #2 tape during these months. This insight would not 
be known unless a time series analysis was performed.

FORECASTING DEMAND OF A PRODUCT

2010 2011 2012
Year

2013 2014

FIGURE 10.2
A time series analysis can reveal trends and seasonal patterns.
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10.1 � DATA-DRIVEN APPROACHES
It is helpful to start out with a basic notation system for time series in order to 
understand the different methodologies. The following measures are important:

	 n	� Time periods: t = 1, 2, 3, …, n . Time periods can be seconds, days, 
weeks, months, or years depending on the problem.

	 n	 �Data series corresponding to each time period above: y1, y2, y3, … yn.
	 n	 �Forecasts: Fn+h → forecast for the hth time period following n. Usually  

h = 1, the next time period following the last data point. However h can 
be greater than 1. “h” is called the horizon.

	 n	� Forecast errors: et = yt – Ft for any given time, t.

In order to explain the different methods, we will use a simple time series data 
function, Y(t). Y is the value of the time series at any time t. The data represents the 
value of Y over a 36-month period. (Data and accompanying models are available 
from the companion site www.LearnPredictiveAnalytics.com) As you can see in 
Figure 10.3, Y(t) can be imagined to be made up of a periodic (or seasonal) com-
ponent and a random (noise) component. Additionally, Y(t) may have a small (in 
this case, upward) linear trend as well. Furthermore, the time periods are constant. 
However, for some data the period may be variable. In such cases, we assume that 
an interpolation scheme is applied to obtain equally spaced (in time) data points.

10.1.1 � Naïve Forecast
Probably the simplest forecasting “model.” Here we simply assume that Fn+1, 
the forecast for the next period in the series, is given by the last data point of 
the series, yn:

	Fn + 1
(

= yn + 1

)
= yn	 (10.2)
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A simple time series, Y(t).

http://detroitperforms.org


30910.1  Data-Driven Approaches

10.1.2 � Simple Average
Moving up a level, we could compute the next data point as an average of all 
the data points in the series. In other words, this model calculates the fore-
casted value, Fn+1, as

	Fn + 1 = AVERAGE (yn, yn − 1, yn − 2,..., y1)	 (10.3)

Suppose we have monthly data from January to December and we want to 
predict the next January (n + 1) value, we simply average the values from 
January (n = 1) to December (n = 12).

10.1.3 � Moving Average
The obvious problem with a simple average is figuring out how many points 
to use in the average calculation. As the data grows (as n increases), should 
we still use all the n time periods to compute the next forecast? To overcome 
this problem, we can select a window of the last “k” periods to calculate the 
average, and as the actual data grows over time, we always take the last k sam-
ples to average, i.e., n, n – 1, …, n – k + 1. In other words, the window for 
averaging keeps moving forward and thus returns a moving average. Suppose 
in our simple example that the window k = 3; then to predict the January 
data, we take a three-month average using the last three months. When the 
actual data from January comes in, the February value is forecasted using Jan-
uary (n), December (n – 1) and November (n – 3 + 1 or n – 2). This model 
will result in problems when there is seasonality in data (for example, in 
December for retail or in January for healthcare insurance), which can skew 
the average.

10.1.4 � Weighted Moving Average
For some cases, the most recent value could have more influence than some 
of the earlier values. Most exponential growth occurs due to this simple effect. 
The forecast for the next period is given by the model

	Fn + 1 = (a * yn + b * yn − 1 + c * yn − 2) / (a + b + c)	 (10.4)

where typically a > b > c. Figure 10.4 compares the forecast results for the sim-
ple time series introduced earlier. Note that all of the above methods are able 
to make only one-step-ahead forecasts due to the nature of their formulation. 
The coefficients a, b, and c may be arbitrary, but are usually based on some 
previous knowledge of the time series.

Next we will consider exponential smoothing, which is a slightly different 
form of weighted moving averages.
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10.1.5 � Exponential Smoothing
What would happen if we use the previously forecasted value for a given period 
to predict the value for the next period? Going back to our monthly example, 
if we wanted to make the February forecast using not only the actual January 
value but also the previously forecasted January value, the new forecast would 
have “learned” the data a little better. This is the concept behind basic expo-
nential smoothing (Brown, 1956):

	Fn + 1 = α * yn + (1 − α) * Fn	 (10.5)
α is generally between 0 and 1. If α is close to 1, then the previously forecasted 
value of the last period has less weight than the actual value of the last period 
and vice versa. Note that α = 1 returns the naïve forecast of Equation 10.2. 
As seen in the charts in Figure 10.5, using a higher α results in putting more 
weight on actual values and the resulting curve is closer to the actual curve, 
but using a lower α results in putting more emphasis on previously forecasted 
value and results in a smoother but less accurate fit. Typical values for α range 
from 0.2 to 0.4 in practice.

This simple exponential smoothing is the basis for a number of very common 
data-driven forecasting methods. The above model has only one parameter, α, 
and can help to smooth the data in a time series so that it is easy to extrapolate 
and make forecasts. But if you examine Equation 10.5, you see that you cannot 
make forecasts more than one-step ahead, because to make a forecast for step  
(n + 1), we need data for the previous step, n. It is not possible to make forecasts 
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several steps ahead, i.e., (n + h), using the three methods described above (where 
we have simply assumed that Fn+h = Fn+1). Here “h” is called the “horizon.” This 
obviously has limited utility. For making longer horizon forecasts, that is where  
h >> 1, we need to also consider trend and seasonality information and the 
simple exponential smoothing methods quickly become more complicated. 
An overview of advanced exponential smoothing is described in the next few 
sections.

A time series is made up of what is known as nonstationary data. “Non-
stationary” means that the series typically demonstrates a trend and a 
seasonal pattern in addition to “normal” fluctuations (Hyndman, 2014). 
As mentioned earlier, most time series can be decomposed into the fol-
lowing components: trend, seasonality, and random noise (see Figure 
10.6). To be able to capture trend and seasonality, we need more sophis-
ticated techniques than the ones described so far. The good news is that 
there are many well-established data-driven methods that can help 
accomplish this. Once we capture trend and seasonality, we can fore-
cast the value at any time in the future, not just one step ahead values.  
We will give a bird’s eye view of the common ones to introduce them.

10.1.6 � Holt’s Two-Parameter Exponential Smoothing
Anyone who has used a spreadsheet for creating trend lines on scatterplots 
intuitively knows what a trend means. A trend is an averaged long-term ten-
dency of a time series. The simplified exponential smoothing model described 
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earlier is not very effective at capturing trends. An extension of this technique 
called Holt’s two-parameter exponential smoothing is needed to accomplish 
this.

Recall that exponential smoothing Equation (10.5) simply calculates the 
average value of the time series at n + 1. If the series also has a trend, then an 
average slope of the series needs to be estimated as well. This is what Holt’s 
two-parameter smoothing does by means of another parameter, β. A smooth-
ing equation similar to Equation 10.5 is constructed for the average trend 
at n + 1. With two parameters, α and β, any time series with a trend can be 
modeled and therefore forecasted. The forecast can be expressed as a sum of 
these two components, average value or “level” of the series, Ln, and trend, 
Tn, recursively as follows:

	Fn + 1 = Ln + Tn	 (10.6)

where, Ln = α * yn + (1 – α) * (Ln–1 + Tn–1) and Tn = β * (Ln – Ln–1) + (1 – β) * 
Tn–1

10.1.7 � Holt-Winters’ Three-Parameter Exponential 
Smoothing

When a time series contains seasonality in addition to a trend, we will need 
yet another parameter, γ, to estimate the seasonal component of the time 
series (Winters, 1960). The estimates for value (or level) are now adjusted by 
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a seasonal index, which is computed with a third equation that includesγ. For 
mathematical details of all these algorithms, the reader is referred to one of 
the many texts dedicated to time series forecasting (Shmueli, 2011; Hyndman, 
2014; Box, 2008).

10.2 � MODEL-DRIVEN FORECASTING METHODS
Model-driven approaches to time series forecasting will overcome the 
one-step-ahead limitation of some of the data-driven methods. As mentioned 
at the beginning of the chapter, in model-driven methods, time is the predic-
tor or independent variable and the time series value is the dependent variable. 
Model-based methods are generally preferable when the time series appears to 
have a “global” pattern. The idea is that the model parameters will be able to 
capture these patterns and thus enable us to make predictions for any step ahead 
in the future under the assumption that this pattern is going to repeat. For a time 
series with local patterns instead of a global pattern, using the model-driven 
approach requires specifying how and when the patterns change, which is diffi-
cult. For such a series, data-driven approaches work best because these methods 
usually rely on extrapolating the most recent local pattern as we saw earlier.

Figure 10.7 shows two time series: Figure 10.7a shows annual monsoon pre-
cipitation in Southwest India averaged over a five-year period (Krishnakumar,  
2009). Figure 10.7b shows the adjusted month-end closing prices of the SPDR S&P 
500 (SPY) Index over another five-year period. Clearly a model-driven forecasting 
method would work very well for the rainfall series. However the financial time 
series shows no clear start or end for any patterns. It is preferable to use data-driven 
methods to attempt to forecast this second series.

10.2.1 � Linear Regression
The simplest of the model-driven approaches for analyzing a time series is 
using linear regression. As mentioned in the introduction to the chapter, we 
assume the time period is the independent variable and attempt to predict the 
time series value using this. For the simple 36-month dataset we have used so 
far, the chart in Figure 10.8a shows a linear regression fit created using a stan-
dard spreadsheet. As you can see, the linear regression model is able to capture 
the long-term tendency of the series, but it does a very poor job of fitting the 
data. This is reflected in the R2 value shown as well.

10.2.2 � Polynomial Regression
We can attempt to improve this using a more “sophisticated” polynomial 
fit. Polynomial regression is similar to linear regression except that higher-d
egree functions of the independent variable are used (squares and cubes). As 
seen in Figure 10.8b, it is difficult to argue that the cubic polynomial does a 
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significantly better job. However in either of these cases, we are not limited to a 
one-step-ahead forecast of the simple smoothing (data-driven) methods.

10.2.3 � Linear Regression with Seasonality
But one can significantly improve upon the fit with linear regression by sim-
ply accounting for seasonality. This is done by introducing dummy variables 
for each month of the series, which trigger to 1 or 0 as seen in the table in 
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Table 10.1. Just this very trivial addition to the predictors of the linear regres-
sion model can yield a surprisingly good fit as seen in Figure 10.9. Although 
the model equation may appear very complicated, in reality it is just a linear 
regression model in 13 variables: the time period and 12 dummy variables for 
each month of a year. The time-independent variable captures the trend and 
the 12 dummy variables capture seasonality. This regression equation can be 
used for predicting any future value beyond n + 1, and thus has significantly 
more utility than the corresponding simpler counterparts in the data-driven 
side.

3

2.5

1.5

0.5

-0.5

2

1

0
0 5 10 15 20 25 30 35 40

Yt
Linear (Yt)

y = 0.0305x + 0.696
R2 = 0.1798

FIGURE 10.8a
Simple linear regression model.

3

2.5

1.5

0.5

-0.5

2

1

0
0 5 10 15 20 25 30 35 40

Yt
y = -0.0001x3 + 0.0086x2 - 0.1145x + 1.2544

R2 = 0.2163
Poly. (Yt)

FIGURE 10.8b
Polynomial regression model.



Table 10.1  Seasonality Modeled via Linear Regression and the Accompanying Fit

Month t Dummy_1 Dummy_2 Dummy_3 Dummy_4 Dummy_5 Dummy_6 Dummy_7 Dummy_8 Dummy_9 Dummy_10 Dummy_11 Dummy_12 Yt

Jan 1 1 0 0 0 0 0 0 0 0 0 0 0 0.709

Feb 2 0 1 0 0 0 0 0 0 0 0 0 0 1.886

Mar 3 0 0 1 0 0 0 0 0 0 0 0 0 1.293

Apr 4 0 0 0 1 0 0 0 0 0 0 0 0 0.822

May 5 0 0 0 0 1 0 0 0 0 0 0 0 −0.173

Jun 6 0 0 0 0 0 1 0 0 0 0 0 0 0.552

Jul 7 0 0 0 0 0 0 1 0 0 0 0 0 1.169

Aug 8 0 0 0 0 0 0 0 1 0 0 0 0 1.604

Sep 9 0 0 0 0 0 0 0 0 1 0 0 0 0.949

Oct 10 0 0 0 0 0 0 0 0 0 1 0 0 0.08

Nov 11 0 0 0 0 0 0 0 0 0 0 1 0 −0.04

Dec 12 0 0 0 0 0 0 0 0 0 0 0 1 1.381
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There is of course no reason to use linear regression alone to capture both trend 
and seasonality. More sophisticated models can easily be built using polyno-
mial equations along with the sine and cosine function to model seasonality. 
They will achieve the same effect.

10.2.4 � Autoregression Models and ARIMA
The second column of Table 10.2 shows the data for our simple time series. In 
the third column, we collect the values from month 6 to month 12 of year 1 
(2010), and in the fourth column we collect values from month 13 to month 
18. This new series of values is termed a “lag ”series and we see that there is 
some correlation between them. In particular, values belonging to the same 
row are strongly correlated. For example, every fifth month (May 2010, Nov. 
2010, and May 2011), the values drop below zero. This phenomenon is called 
autocorrelation and it can be used to our advantage. Autoregression methods 
are basically regression models applied on lag series where each lag series is 
a new predictor used to fit the dependent variable, which is still the original 
series value, Yt. In addition to creating a lag series of actual values, we can also 
create a lag series involving forecast errors and use this as another predictor.

The ARIMA methodology originally developed by Box and Jenkins in the 1970s 
(Box, 1970) allows us to do this type of modeling. ARIMA is a complex tech-
nique and it requires a great deal of experience to produce good forecast results. 
Although RapidMiner does provide means to perform lagging operations, it 
does not provide a simple way to implement ARIMA. We refer the reader to the 
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many online and offline resources on ARIMA for further information about its 
applications (see for example, Alnaa, 2011). In the next few sections we focus 
on using RapidMiner to perform time series analysis and forecasts.

10.2.5 � How to Implement
RapidMiner’s approach to time series is based on two main data transforma-
tion processes. The first is windowing to transform the time series data into a 
generic data set: this step will convert the last row of a window within the time 
series into a label or target variable. We apply any of the “learners” or algo-
rithms to predict the target variable and thus predict the next time step in the 
series. A “typical” time series and its transformed structure (after windowing) 
is conceptually shown in Figure 10.10.

The parameters of the Windowing operator allow changing the size of the 
windows (shown as vertical boxes in dashed lines, on the left of figure 10.10), 
the overlap between consecutive windows (also known as step size), and the 
prediction horizon, which is used for forecasting. The prediction horizon 
controls which row in the raw data series ends up as the label variable in 
the transformed series. (For example, in the above example, the prediction 
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horizon is 0, the next section gives more details.) Thus series data are now 
converted into a generic cross-sectional data set that can be “predicted” with 
any of the available algorithms in RapidMiner.

The next main process required for running time series analyses using Rapid-
Miner involves applying any of the available “learners” to “predict” the label 
variable shown in the gray box (see Figure 10.10). The example set (or raw 
data) for this learner is the “horizontal” data set shown above with the target or 
label variable in the box. Also, most of the Performance operators can be used 
to assess the fitness of the learning scheme to the data.
In this section, we will show how to set up a RapidMiner process to model the 
simple time series Y(t) described in Section 10.1. The data set could refer to 
historical monthly profits from a particular product, for example, from Janu-
ary 2009 to June 2010. The data was previously shown in Table 10.1 (column 
labeled Yt). Our objective in this exercise is to develop profitability forecasts for 
the next 12 months and also show some of the advantages of using machine 
learning algorithms for forecasting problems compared to conventional (aver-
aging or smoothing type) forecasting algorithms. The process consists of the 
following three steps: (1) set up windowing; (2) train the model with several 
different algorithms; and (3) generate the forecasts.

Step 1: Set Up Windowing
The process window in Figure 10.11 shows the necessary operators for win-
dowing. All time series will have a date column and this must be treated with 
special care. RapidMiner must be informed that one of the columns in the data 
set is a date and should be considered as an “id.” This is accomplished by the 
Set Role operator. If you have multiple commodities in the input data, you may 
also want to Select Attributes that you want to forecast. In this case, we have 
only one series and strictly speaking we do not need this operator. However to 
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FIGURE 10.10
Concept of windowing transformation.
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make the process generic we include it and select the column labeled “inpu-
tYt.” The final operator is the Windowing operator. (You may need to install the 
Series extension, if you have not already. Go to Help -> Manage Extensions to 
verify.)

Additionally, you may want to use the Filter Examples operator to remove any 
attributes that have missing values. The main items to consider in Windowing 
are the following:

	 n	� Window size: Determines how many “attributes” are created for the 
cross-sectional data. Each row of the original time series within the 
window width will become a new attribute. In this example we choose 
w = 6.

	 n	� Step size: Determines how to advance the window. Let us use s = 1.
	 n	�� Horizon: Determines how far out to make the forecast. If the window 

size is 6 and the horizon is 1, then the seventh row of the original time 
series becomes the first sample for the “label” variable. Let us use h = 1, 
as well.

Figure 10.12 shows the original data and the transformed output from the 
windowing process and describes the transformation details. The main 
point to keep in mind is that for the window selected and shown in the 
box the target or response variable value is the value from Jul 1, 2009. 
When training any algorithm using this data, the attributes labeled inpu-
tYt-5 through inputYt-0 form the independent variables. This is shown in 
the output of step 2 (Figure 10.13).

FIGURE 10.11
Applying windowing to raw time series data.
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Step 2: Train the Model
Once the windowing is done, then the real power of predictive analytics algo-
rithms may be brought to bear on a time series analysis. This is where the 
advantage of using RapidMiner comes into play. Now that the time series is 
encoded and transformed into a cross-sectional data set, we can use any of 
the available machine learning algorithms such as regression, neural networks, 
or support vector machines, for example, to generate predictions. In this case 
we use linear regression to fit the “dependent” variable called label, given the 
“independent” variables inputYt-5 through inputYt-0.

Once the model fitting is done, the next step is to start the forecasting process. 
Note that given this configuration of window size and horizon, we can now 
only make the forecast for the next step. In the example, the last row of the 
transformed data set corresponds to Nov. 1, 2011. The independent variables 
are values from June through November 2011 and the target or label variable 
is from December 2011. But we can use the regression equation and the val-
ues from the Nov. 1, 2011 row to generate the forecast for January 2012. All 
we need to do is insert the values from July–December into the regression 
equation to generate the January 2012 forecast. This is just the (n + 1)th fore-
cast and all the sophisticated windowing with equation fitting accomplishes 
nothing more than what the simple smoothing algorithms described in 

FIGURE 10.12
Output of windowing transformation.
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Section 10.1 could have done! At this point, extending this to provide future 
values beyond (n + 1) might have become apparent to the reader. Next, we 
need to generate a new row of data that would run from August–January to 
predict February using the regression equation. We have all the (actual) data 
from August to December and the predicted value for January at our disposal. 
Once we have the predicted February value, there is nothing stopping us from 
using the actual data from September–December plus predicted January and 
February values to forecast March.

Actually accomplishing this using RapidMiner is easier said than done. We 
need to break this up into two separate parts. First, you take the last forecasted 
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FIGURE 10.13
Using the process shown (a), the “label” variable is fitted using the six dependent variables via linear regression (b). Note that the label for 
any given row is the inputYt-0 for the next row (c).

FIGURE 10.14
Using Loop function in the windowing process allows forecasting more than 1-step ahead.
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row (in this case, December 2011), drop the current value of inputYt-5 (current 
value is 1.201), rename inputYt-4 to inputYt-5, rename inputYt-3 to inputYt-4, 
rename inputYt-2 to inputYt-3, rename inputYt-1 to inputYt-2, rename inputYt-0 
to inputYt-1, and finally rename predicted label (current value is 1.934) to inp-
utYt-0. With this new row of data, you can then apply the regression model 
to predict the next date in the series: January 2012. Next, you need to put this 
entire process inside a Loop operator that will allow you to repeatedly run these 
steps for as many future periods as you need.

The results of this process are illustrated in Figure 10.14 and the implementa-
tion is described in detail in step 3.

Step 3: Generate the Forecasts
The outer level process for the first part is shown in Figure 10.15. We can 
add another Windowing operator, which will transform input and allow us 
to collect the last forecasted row and feed it to an inner level Loop process  
(Figure 10.16). The Loop operator will contain all the mechanisms for accom-
plishing the renaming and, of course, to perform looping. Set the iterations in 

FIGURE 10.14
Using Loop function in the windowing process allows forecasting more than 1-step ahead.
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the Loop operator to the number of future months to forecast (horizon). In 
our case, this is defined by a variable called futureMonths whose value can be 
changed by the user before process execution. It is also possible to capture the 
Loop counts in a macro if you click the set iteration macro check box. A macro 
in RapidMiner is nothing but a variable that can be called by other operators 
in the process. When set iteration macro is checked and a name is provided in 
the macro name box, a variable will be created with that name whose value will 
be updated each time, one loop is completed. An initial value for this macro 
is set by the macro start value option. Loops may be terminated by specifying a 
timeout, which is enabled by checking the limit time box. A macro variable can 
be used by any other operator by using the format %{macro name} in place 
of a numeric value.

But before we start the looping, we need to store the last forecasted row in 
a separate data structure. This is accomplished by the macro titled Extract 
Example Set. The Filter Example operator simply deletes all rows of the trans-
formed data set except the last forecasted row. Finally the Remember operator 
stores this in memory and allows us to “recall” the stored value once inside 
the loop.

FIGURE 10.15
Outer process for generating forecasts. Two Windowing operators (arrows) are needed: one to train the model (upper) and another to feed 
the trained model (lower).
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The loop parameter iterations will determine the number of times the inner pro-
cess is repeated. During each iteration, the model is applied on the last fore-
casted row, and bookkeeping operations are performed to prepare application 
of the model to forecast the next month. This includes incrementing the month 
(date) by one, changing the role of the predicted label to that of a regular attri-
bute, and finally renaming all the attributes as discussed in the last part of step 
2. The newly renamed data is stored and then recalled before the next iteration 
begins.

The output of our process is shown in Figure 10.17 as an overlay on top 
of the actual data. (The tabular form of the results was already shown in  
Figure 10.14.) As seen, the simple linear regression model seems to adequately 
capture both the trend and seasonality of the underlying data. The real benefit 
of using RapidMiner for time series forecasting lies in being able to quickly 
change the modeling scheme. We can quickly swap out the Linear Regression 
operator of step 2 to a Support Vector Machine operator and test its performance 
without having to do any other programming or process modification. Ulti-
mately, the user can select the best performing modeler with very little extra 
effort.

An important point about any time series forecasting is that one should not 
place too much emphasis on “point” forecasts. A complex quantity like a stock 

FIGURE 10.16
Inner level loop process for generating forecasts.
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price or sales demand for a manufactured good is influenced by too many 
factors and to claim that any forecasting will predict the exact value of a stock 
two days in advance or the exact value of demand three months in advance is 
unrealistic. However, what is far more valuable is the fact that recent undula-
tions in the price or demand can be effectively captured and predicted. This 
is where RapidMiner excels by allowing us to swap modeling techniques and 
experiment.

CONCLUSION
In this chapter we have given a high level overview of the field of time series 
modeling. We started out by illustrating the key differences between predic-
tive models for time series and predictive models for cross-sectional data. We 
then discussed the two main classes of time series forecasting approaches and 
showed how RapidMiner uses what may best be termed a “hybrid” approach. 
We finally demonstrated how to implement a real-world time series modeling 
and forecasting problem entirely using RapidMiner.

Univariate time series forecasting treats prediction as essentially a single-vari-
able problem, whereas multivariate time series may use many time-concurred 
series for prediction. If you have a series of points spaced over time, conven-
tional forecasting uses smoothing and averaging to “predict” where the next 
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Output of the forecasting process.

few points will likely be. However, for complex systems such as the economy or 
stock market, point forecasts are unreliable because these systems are functions 
of hundreds if not thousands of variables. What is more valuable or useful is 
the ability to predict trends, rather than point forecasts. We can predict trends 
with greater confidence and reliability (i.e., Are the quantities going to trend 
up or down?), rather than the values or levels of these quantities. For this rea-
son, using different modeling schemes such as artificial neural networks or 
support vector machines or even polynomial regression can sometimes give 
highly accurate trend forecasts. With conventional forecasting available in the 
R extension, we have the option of using a variety of smoothing functions and 
modeling techniques such as ARIMA.

If you do have a time series that is not highly volatile (and therefore more pre-
dictable), conventional time series forecasting can help you understand the 
underlying structure of the variability better. In such cases, trends or seasonal 
components have a stronger signature than the random component. R does a 
very good job of taking any time series and breaking it up into these compo-
nents. If your time series project involves decomposing data into trends and sea-
sonality, then using the R extension in RapidMiner may be the best way to go.
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CHAPTER 11

Anomaly detection is the process of finding outliers in the data set. Outliers 
are the data objects that stand out amongst other data objects and do not 
conform to the expected behavior in a data set. Anomaly detection algo-
rithms have broad applications in business, scientific, and security domains 
where isolating and acting on the results of outlier detection is critical. For 
identification of anomalies, algorithms discussed in previous chapters such 
as classification, regression, and clustering can be used. If the training data 
set has objects with known anomalous outcomes, then any of the super-
vised data mining algorithms can be used for anomaly detection. In addition 
to supervised algorithms, there are specialized (unsupervised) algorithms 
whose whole purpose is to detect outliers without use of a labeled training 
data set. In the context of unsupervised anomaly detection, algorithms can 
either measure distance from other data points or density around the neigh-
borhood of the data point. We can even leverage clustering techniques for 
anomaly detection. The outlier usually forms a separate cluster from other 
clusters because they are far away from other data points. We will be revis-
iting some of the techniques discussed in previous chapters in the context 
of outlier detection. Before discussing the algorithms, we need to define the 
term outlier or anomaly and understand why such data points occur in the 
data set.

11.1 � ANOMALY DETECTION CONCEPTS
An outlier is a data object that is markedly different from the other objects 
in the data set. Hence an outlier is always defined in the context of other 
objects in the data set. A high-income individual may be an outlier in a 
middle-class neighborhood data set, but not in the membership of a lux-
ury vehicle ownership data set. By nature of occurrence, outliers are also 
rare and hence they stand out amongst other data points. For example, the 
majority of computer network traffic is legitimate and the one malicious 
network attack would be the outlier.

Anomaly Detection
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11.1.1 � Causes of Outliers
Outliers in the data set can originate from either error in the data or from valid 
inherent variability in the data. It is important to understand the provenance of the 
outliers because it will guide what action, if any, should be performed on the iden-
tified outliers. However, pinpointing exactly what caused an outlier is a tedious 
task and in many cases it is impossible to find the causes of outliers in the data set. 
Here are some of the most common reasons why an outlier occurs in the data set:

	 n	� Data errors: Outliers may be part of the data set because of measurement 
errors, human errors, or data collection errors. For example, in a data 
set of human heights, a reading such as 1.70 centimeters is obviously 
an error and most likely was entered wrongly in the system. These data 
points are often ignored because they affect the conclusion of the data 
mining task. Outlier detection here is used as a preprocessing step in 
algorithms such as regression and neural networks. Data errors due to 
human mistake could be either intentional introduction of error or 
unintentional error due to data entry error or significant bias.

	 n	� Normal variance in the data: In a normal distribution, 99.7% of data 
points lie within three standard deviations from the mean. In other 
terms, 0.26% or 1 in 370 data points lie outside three standard deviations 
from the mean. By definition, they don’t occur frequently and are a part 
of legitimate data. An individual earning a billion dollars in a year or 
someone who is more than 7 feet tall falls under the category of outlier in 
an income data set and human height data set respectively. These outliers 
skew some of the descriptive statistics like the mean of the data set. 
Regardless, they are legitimate data points in the data set.

	 n	� Data from other distribution classes: The number of daily page views 
for a customer-facing website from a user IP address usually range 
from one to a few dozens. However, it is not unusual to find a few IP 
addresses making calls for hundreds of thousands page views in a day. 
This outlier could be an automated program from a computer (also 
called a bot) making the calls to scrape the content of the site or access 
one of the utilities of the site, either legitimately or maliciously. Even 
though they are an outlier, it is quite “normal” for bots registering 
thousands of page view calls to a website. All bot traffic falls under 
distribution of a different class—“traffic from programs” other than 
traffic from regular browsers that fall under the human user class.

	 n	� Distributional assumptions: Outlier data points can originate from 
incorrect assumptions made on the data or distribution. For example, 
if the data measured is usage of a library in a school, then during 
term exams there will be an outlier because of surge in usage of the 
library. Similarly, there will be a surge in retail sales during the day after 
Thanksgiving in the United States. An outlier in this case is expected, 
and doesn’t represent the data point of a typical measure.
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Understanding why outliers occur will help to determine what action to per-
form after outlier detection. In a few applications, the objective is to isolate 
and act on the outlier as we see in credit card transaction fraud monitoring. 
In this case, credit card transactions exhibiting different behavior from most 
normal transactions (such as high frequency, high amounts, or very large geo-
graphic separation between points of consecutive transactions) need to be iso-
lated, alerted and credit card customer needs to be contacted immediately to 
verify the authenticity of the transaction. In other cases, we would need to filter 
out outliers because they may skew the final outcome. Here outlier detection is 
used as a preprocessing technique for other data mining or analytical tasks. For 
example, we may want to eliminate ultra-high-income earners to generalize 
a country’s income patterns. Here outliers are legitimate data points, but we 
intentionally disregard them to generalize conclusions.

The rise in online advertising has underwritten many 
successful Internet business models and enterprises. 
Online advertisements make free Internet services like web 
searches, news content, social networks, mobile application, 
and many other services viable. One of the key challenges 
in online advertisements is mitigating click frauds. Click 
fraud is a process where an automated program or a person 
imitates the action of a normal user clicking on an online 
advertisement, with the malicious intent of defrauding the 
advertiser, publisher, or advertisement network. Click fraud 
could be performed by contracting parties or third parties, 
like competitors trying to deplete advertisement budgets 
or to tarnish the reputation of the sites. Click fraud distorts 
the economics of advertising and poses a major challenge 
for all parties involved in online advertising (Haddadi, 2010). 
Detecting, eliminating, or discounting click fraud makes 
the entire marketplace trustworthy and even provides 
competitive advantage for all the parties.

Detecting click frauds takes advantage of the fact that 
fraudulent traffic exhibits an atypical web browsing pattern 
when compared with typical clickstream data. Fraudulent 
traffic often does not follow a logical sequence of actions and 
contains repetitive actions that would differentiate from other 
regular traffic (Sadagopan & Li, 2008). For example, most of 
the fraudulent traffic exhibits either one or many of following 
characteristics: they have very high click depth (number of web 
pages accessed deep in the website); the time between each 
click would be very low; a single session would have a high 
number of clicks on advertisements as compared with normal 

user; the originating IP address would be different from the 
target market of the advertisement; there would be very little 
time spent on advertiser’s target website; etc. It is not one trait 
that differentiates fraudulent traffic from regular traffic, but the 
combination of the traits. Detecting click fraud is an ongoing 
and evolving process. Increasingly the click fraud perpetuators 
are getting sophisticated in imitating the characteristics of 
a normal web browsing user. Hence, click fraud cannot be 
fully eliminated; however it can be contained by constantly 
developing new algorithms to identify fraudulent traffic.

To detect click fraud outliers, first we need to prepare 
clickstream data in such a way that detection using data 
mining is easier. A relational column-row data set can be 
prepared with each visit occupying each row and the columns 
being traits like click depth, time between each clicks, 
advertisement clicks, total time spent in target website, etc. 
This multidimensional data set can be used for outlier detection 
using data mining. Clickstream traits or attributes need to be 
carefully considered, evaluated, transformed, and added in 
the data set. In multidimensional data space, the fraudulent 
traffic (data point) is distant from other visit records because 
of their attributes, such as number of ad clicks in a session.  
A regular visit usually has one or two ad clicks in a session, 
while a fraudulent visit would have dozens of ad clicks. 
Similarly, other attributes can help in identifying the outlier 
more precisely. Outlier detection algorithms reviewed in 
this chapter assign an outlier score (fraud score) for all the 
clickstream data points and the records with a higher score 
are predicted to be outliers.

DETECTING CLICK FRAUD IN ONLINE ADVERTISING
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11.1.2 � Anomaly Detection Techniques
Humans are innately equipped to focus on outliers. The news we hear every 
day is mainly hinged on outlier events. Our interest around knowing who 
is the fastest, who earns the most, and who wins the most medals or scores 
the most goals is in part due to our increased attention to outliers. If the 
data is in one dimension like taxable income for individuals, we can iden-
tify outliers by a simple sorting function. Visualizing data by scatter, his-
togram, and box-whisker charts can help to identify outliers in the case 
of single attribute data sets as well. More advanced techniques would be 
fitting the data to a distribution model and using data mining techniques 
to detect outliers.

Outlier Detection Using Statistical Methods
Outliers in the data can be identified by creating a statistical distribution model 
of the data and identifying the data points that don’t fit into the model or data 
points that occupy the ends of distribution tails. The underlying distribution 
of many practical data sets falls into the Gaussian (normal) distribution. The 
parameters for building a normal distribution (i.e., mean and standard devia-
tion) can be estimated from the data set and the normal distribution curve can 
be created like the one shown in Figure 11.1.

Outliers can be detected based on where the data points fall in the stan-
dard normal distribution curve. A threshold for classifying an outlier 
can be specified, say three standard deviations from the mean. Any data 
point that is more than three standard deviations is identified as an out-
lier. Identifying outliers using this method considers only one attribute or 
dimension at a time. More advanced statistical techniques takes multiple 
dimensions into account and calculate the Mahalanobis distance instead of 
standard deviations from mean in a univariate distribution. Mahalanobis 
distance is the multivariate generalization of finding how many standard 
deviations away a point is from the mean of the multivariate distribution. 
Outlier detection using statistics provides a simple framework for building 
a distribution model and detection based on the variance of the data point 
from the mean. A limitation in using the distribution model to find outli-
ers is that in many cases the distribution of the data set is not previously 
known. Even if the distribution is known, the actual data doesn’t always fit  
the model.

Outlier Detection Using Data Mining
Outliers exhibit a certain set of characteristics that can be exploited to find 
them. Following are classes of techniques developed to identity outliers by 
using their unique characteristics (Tan et al., 2005). Each of these techniques 
has multiple parameters and hence a data point labeled as an outlier in one 
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algorithm may not be an outlier to another. Hence it is prudent to rely on mul-
tiple algorithms before labeling the outliers.

	 n	� Distance based: By nature, outliers are different from other data objects 
in the data set. In multidimensional Cartesian space they are distant 
from other data points, as shown in Figure 11.2. If we measure average 
distance of the nearest N neighbors, the outliers will have a higher value 
than other normal data points. Distance-based algorithms utilize this 
property to identify outliers in the data.

	 n	� Density based: The density of a data point in a neighborhood is 
inversely related to the distance to its neighbors. Outliers occupy low-
density areas while the regular data points often congregate in high-
density areas. This is derived from the fact that the relative occurrence of 
an outlier is low compared with the frequency of normal data points.

	 n	� Distribution based: Outliers are the data points that have a low 
probability of occurrence and they occupy the tail ends of the 

FIGURE 11.1
Standard normal distribution and outliers.

FIGURE 11.2
Distance-based outlier
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distribution curve. So, if we try to fit the data set in a statistical 
distribution, these anomalous data points will stand out and hence can 
be identified. A simple normal distribution can be used to model the 
data set by calculating the mean and standard deviation.

	 n	� Clustering: Outliers by definition are not similar to normal data points 
in a data set. They are rare data points far away from regular data points 
and generally do not form a tight cluster. Since most of the clustering 
algorithms have a minimum threshold of data points to form a cluster, 
the outliers are the lone data points that are not clustered. Even if 
outliers form a separate cluster, they are far away from other clusters.

	 n	� Classification techniques: Nearly all classification techniques can be 
used to identify outliers, if previously known classified data is available. 
In classification techniques for detecting outliers, we need to have 
a known test data set where one of the class labels should be called 
“Outlier”. The outlier detection classification model that is built based 
on the test data set can predict whether the unknown data is an outlier 
or not. The challenge in using a classification model is the availability of 
previously labeled data. Outlier data may be difficult to source because 
they are rare. This can be partially solved by stratified sampling where 
the outlier records are oversampled against normal records.

We have discussed supervised classification methods in previous chapters and 
we will discuss unsupervised outlier detection methods in the following sec-
tions. We will focus mainly on the distance and density based detection tech-
niques in the following sections.

11.2 � DISTANCE-BASED OUTLIER DETECTION
Distance or proximity-based outlier detection is one of the most fundamental 
algorithms for anomaly detection and it relies on the fact that outliers are dis-
tant from other data points. The proximity measures can be simple Euclidean 
distance for real values and cosine or Jaccard similarity measures for binary 
and categorical values. For the purpose of the discussion, let’s consider a data 
set with numeric attributes and Euclidean distance as the proximity measure. 
Figure 11.3 shows a two-dimensional scatterplot of a sample data set. Outliers 
are the data points marked as grey and visually we can identify that they are 
away from groups of data. However, when working with multidimensional 
data with more attributes, visual techniques shows it’s limitation very quickly.

11.2.1 � How it Works
The fundamental concept of distance-based outlier detection is assigning a 
distance score for all the data points in the data set. The distance score should 
reflect how far a data point is separated from other data points. We have 
reviewed a similar concept in the k-nearest neighbor (k-NN) classification 
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technique in Chapter 4 Classification. We can assign a distance score for each 
data object that is the distance to the kth-nearest data object. For example, we 
can assign a distance score for every data object that is the distance to the 
third-nearest data object. If the data object is an outlier, then it is far away from 
other data objects; hence the distance score for the outlier will be higher than 
for a normal data object. If we sort the data objects by distance score, then the 
objects with the highest scores are potentially outlier(s). As with k-NN classifi-
cation or any algorithm that uses distance measures, it is important to normal-
ize the numeric attributes, so an attribute with a higher absolute scale, such as 
income, does not dominate attributes with a lower scale, such as credit score.

In distance-based outlier detection, there is a significant effect based on the value 
of k, as in the k-NN classification technique. If the value of k = 1, then two out-
liers next to each other but far away from other data points are not identified as 
outliers. On the other hand, if the value of k is large, then a group of normal data 
points which form a cohesive cluster will be mislabeled as outliers, if the number 
of data points is less than k and the cluster is far away from other data points. 
With a defined value of k, once the distance scores have been calculated, we can 
specify a distance threshold to identify outliers or pick the top n objects with 
maximum distances, depending on the application and the nature of the data 
set. Figure 11.4 shows the results of two different outlier-detection algorithms 
based on distance for the Iris data set. Figure 11.4a shows the outlier detection 
with k = 1 and Figure 11.4b shows the detection of the same data set with k = 5.

FIGURE 11.3
Data set with outliers
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11.2.2 � How to Implement
Commercial data mining tools offer specific outlier detection algorithms and 
solutions as part of the package either in modeling or data cleansing sections. 
In RapidMiner, unsupervised outlier detection operator can be found in Data 
Transformation > Data Cleansing > Outlier Detection > Detect Outlier Dis-
tance. The example set we use in this process is the Iris data set with four 
numerical attributes and 150 examples.

Step 1: Data Preparation
Even though all four attributes of the Iris data set measure the same quantity 
(length) and are measured on the same scale (centimeters), a normalization 
step is included as a matter of best practice for techniques that involve distance 
calculation. The Normalize operator can be found in Data Transformation > 
Value modification > Numerical. The attributes are converted to a uniform 
scale of mean 0 and standard deviation 1 using Z-transformation.

For the purposes of this demonstration, a two-dimensional scatterplot 
with two attributes will be helpful to visualize outliers. However, the Iris 
data set has four attributes. To aid in this visualization objective, we will 
reduce four numerical attributes to two attributes (principal components) 
using the principal component analysis (PCA) operator. Please note the use 
of the PCA operator is optional and not required for outlier detection. 
The results of the outlier detection with or without PCA in most cases 
will be unchanged. But visualization of the results will be easy with two- 
dimensional scatterplots. PCA will be discussed in detail in Chapter 12 

FIGURE 11.4
Top five outliers of Iris data set when (a) k = 1, (b) k = 5.
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Feature Selection. In this process we have specified a variance threshold 
for the PCA operator of 0.95. Any principal component that has a variance 
threshold more than 0.95 is removed from the result set. The outcome of 
the PCA operator has two principal components.

Step 2: Detect Outlier Operator
The Detect Outlier (Distances) operator has a data input port and outputs data 
with an appended attribute called outlier. The value of the output outlier attri-
bute is either true or false. The Detect Outlier (Distances) operator has three 
parameters that can be configured by the user.

	 n	� Number of neighbors: This is the value of k in the algorithm. The 
default value is 10. If the value is made lower, the process finds smaller 
outlier clusters with less data points.

	 n	� Number of outliers: The individual outlier score is not visible to the 
users. Instead the algorithm finds the data points with the highest 
outlier scores. The number of data points to be found can be configured 
using this parameter.

	 n	� Distance function: As in the k-NN algorithm, we have to specify 
the distance measurement function. Commonly used functions are 
Euclidian and cosine (for document vectors).

In this example we make k = 1, number of outlier = 10, and set the distance 
function to Euclidian. The output of this operator is the example set with an 
appended outlier attribute. Figure 11.5 provides the RapidMiner process with 
data extraction, PCA dimensional reduction, and outlier detection opera-
tors. The process can now be saved and executed.

FIGURE 11.5

Process to detect outlier based on distance.
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Step 3: Execution and Interpretation
The result data set can be sorted by outlier attribute, which has either a true or 
false value. Since we have specified 10 outliers in the parameter of the Detect 
outlier operator, that number of outliers can be found in the result set. An effi-
cient way of exploring the outliers is to look at the scatterplot in the Chart view 
of results set. The X- and Y-axes can be specified as the principal components 
and the color as the outlier attribute. The output scatterplot shows the outlier 
data points along with all the normal data points as shown in Figure 11.6.

Distance-based outlier detection is a simple algorithm that is easy to imple-
ment and widely used when the problem involves many numeric variables. 
The execution becomes expensive when the data set involves a high number of 
attributes and records, because the algorithm needs to calculate distances with 
other data points in high-dimensional space.

11.3 � DENSITY-BASED OUTLIER DETECTION
Outliers, by definition, occur less frequently compared to normal data points. 
This means that in the data space outliers occupy low-density areas and normal 
data points occupy high-density areas. Density is a count of data points in a 
normalized unit space and is inversely proportional to the distances between 

FIGURE 11.6
Outlier detection output
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data points. The objective of a density-based outlier algorithm is to identify 
those data points from low-density areas. There are a few different implemen-
tations to assign an outlier score for the data points. We can find the inverse 
of average distance of all k neighbors. The distance between data points and 
density are inversely proportional. We can also calculate neighborhood density 
by calculating the number of data points from a normalized unit distance. The 
approach for density-based outliers is similar to the approach discussed for 
density-based clustering and for the k-NN classification algorithm.

11.3.1 � How it Works
Since distance is the inverse of density, we can explain the approach of a 
density-based outlier with two parameters, distance (d) and proportion of data 
points (p). A point X is considered an outlier if at least p fraction of points lies 
more than d distance from the point (Knorr & Ng, 1998). Figure 11.7 provides 
a visual illustration of outlier detection. By the above definition, the point X 
occupies a low-density area. The parameter p is specified as a high value, above 
95%. One of the key issues in this implementation is specifying distance d. It 
is important to normalize the attributes so that the distance makes sense, par-
ticularly when attributes involve different measures and units. If the distance d 
is specified too low, then more outliers will be detected, which means normal 
points have the risk of being labeled as outliers and vice versa.

11.3.2 � How to Implement
The RapidMiner process for outlier detection based on density is very similar to 
outlier detection by distance, which was reviewed in the previous section. The pro-
cess developed for previous distance-based outliers can be used, but we will replace 
the Detect Outlier (Distances) operator with the Detect Outlier (Densities) operator.

FIGURE 11.7
Outlier detection based on distance and propensity.
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Step 1: Data Preparation
Data preparation will condition the data so the Detect Outlier (Distances) 
operator returns meaningful results. As with the outlier detection by dis-
tance technique, we will be using the Iris data set with normalization and 
the PCA operator so that we reduce the number of attributes to two for easy 
visualization.

Step 2: Detect Outlier Operator
The Detect Outlier (Densities) operator can be found in Data Transformation >  
Data Cleansing > Outlier Detection > and has three parameters:

	 n	� Distance (d): Threshold distance used to find outliers. For this example, 
we specify the distance as 1.

	 n	� Proportion (p): Proportion of data points outside of radius d of 
a point, beyond which the point is considered an outlier. For this 
example, the value we are specifying is 95%.

	 n	� Distance measurement: A measurement parameter like Euclidean, 
cosine, or squared distance. The default value is Euclidean.

Any data point that has more than 95% of other data points beyond distance 
d is considered an outlier. Figure 11.8 shows the RapidMiner process with the 
Normalization, PCA and Detect Outlier operators. The process can be saved and 
executed.

Step 3: Execution and Interpretation
The process adds an outlier attribute to the example set, which can be used for 
visualization using a scatterplot as shown in Figure 11.9. The outlier attribute 
is Boolean and indicates whether the data point is predicted to be an outlier 

FIGURE 11.8
Process to detect outlier based on density.
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or not. In the scatterplot, we can find a few data points marked as outliers. 
The parameters d and p of the Detect Outlier operator can be tuned to find the 
desired level of outlier detection.

Density-based outlier detection is closely related to distance-based outlier 
approaches and hence the same pros and cons apply. As with distance-based 
outlier detection, the main drawback is this approach doesn’t work with vary-
ing densities. The next approach, local outlier factor (LOF) is designed for such 
data sets. Specifying the parameter distance (d) and proportion (p) is going to 
be challenging, particularly when the characteristics of the data are not previ-
ously known.

11.4 � LOCAL OUTLIER FACTOR
The local outlier factor (LOF) technique is a variation of density-based outlier 
detection, and addresses one of its key limitations, detecting the outliers in vary-
ing density. Varying density is a problem in most of simple density-based meth-
ods, including DBSCAN clustering (see Chapter 7 Clustering). The LOF technique 
was proposed in the paper LOF: Identifying Density-Based Local Outliers (Breunig 
et al., 2000). LOF takes into account the density of the data point and the den-
sity of the neighborhood of the data point as well. A key feature of the LOF tech-
nique is that the outlier score takes into account the relative density of the data 
point. Once the outlier scores for data points are calculated, the data points can 
be sorted to find the outliers in the data set. The core of LOF lies in calculation of 

FIGURE 11.9
Output of density-based outlier detection.
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the relative density. The relative density of a data point x with k neighbors is given 
by Equation 11.1:

	
Relative density of X =

density of X

average density of all data points in the neighborhood	
(11.1)

where the density of x is the inverse of average distance for the nearest k data 
points. The same parameter k also forms the locality of the neighborhood. By 
comparing the density of the data point and density of all the data points in the 
neighborhood, we can determine if the density of the data point is lower than the 
density of the neighborhood. This scenario indicates the presence of an outlier.

11.4.1 � How to Implement
An LOF-based data mining process is similar to the other outlier process 
explained in RapidMiner. The Direct Outlier (LOF) operator is available in 
Data Transformation > Data Cleansing > Outlier Detection. The output of the 
LOF operator contains the example set along with a numeric outlier score. 
The LOF algorithm does not explicitly label a data point as an outlier; instead  
the score is exposed to the user. This score can be used to visualize a compari-
son to a threshold, above which the data point is considered an outlier. Having 
the raw score means that the data mining practitioner can “tune” the detection 
criteria, without having to rerun the scoring process, by changing the threshold 
for comparison.

Step 1: Data Preparation
Similar to the distance- and density-based outlier detection processes, the data 
set have to be normalized using Normalize operator. The PCA operator is used 
to reduce the four-dimensional Iris data set to two dimensions, so that the 
output can be visualized easily.

Step 2: Detect Outlier Operator
The LOF operator has a minimal points (MinPts) lower bound and upper 
bound as parameters. The minimal points lower bound is the value of k, the 
neighborhood number. The LOF algorithm also takes into account a MinPts 
upper bound to provide more stable results (Breunig et al., 2000). Figure 11.10 
shows the RapidMiner process.

Step 3: Results Interpretation
After using the Detect Outlier operator, the outlier score is appended to the 
result data set. Figure 11.11 shows the result set with outlier score represented 
as the color of the data point. In the results window, we can use the outlier 
score to color the data points. The scatterplot indicates that points closer to 
blue spectrum are predicted to be regular data points and points closer to the 
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FIGURE 11.10
RapidMiner process for LOF outlier detection.

FIGURE 11.11
Output of LOF outlier detection
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red spectrum are predicted to be outliers. If an additional Boolean flag indicat-
ing whether a data point is an outlier or not is needed, a Numeric to Binominal 
operator can be added to the result data set. The Numeric to Binominal operator 
converts the numeric outlier score to a binominal true or false based on the 
threshold specification in the parameter of the operator and to the score out-
put from the LOF operator.

CONCLUSION
In addition to the three data mining techniques discussed for outlier detection, 
the RapidMiner Anomaly Detection extension (RapidMiner Extension: Anom-
aly Detection, 2014) offers more algorithms to identify outliers. Rapid Miner 
extensions can be installed by accessing Help > Updates and Extensions.

In theory, any classification algorithm can be used for outlier detection, if a pre-
viously classified data set is available. A generalized classification model tries to 
predict outliers the same way it predicts the class label of the data point. How-
ever, there is one key issue in using classification models. Since the probability 
of occurrence of an outlier is really low, say less than 0.1%, the model can just 
“predict” the class as “regular” for all the data points and still be 99.9% accu-
rate! This method clearly does not work for outlier detection, since the recall 
measure (see Chapter 8 Model Evaluation for details about recall) is 0%. In 
many practical applications like detecting network intrusion or fraud preven-
tion in high-volume transaction networks, the cost of not detecting an outlier 
is very high. The model can even have an acceptable level of false alarms, i.e., 
labeling a regular data point as an outlier. Therefore, special care and prepara-
tion is often needed to improve the detection of the outliers.

Stratified sampling methods can be used to increase the frequency of occur-
rence of outlier records in the training set and reduce the relative occurrence of 
regular data points. In a similar approach, the occurrence of outlier and regular 
records can be sampled with replacement so that there are an equal number of 
records in both classes. Stratified sampling boosts the number of outlier records 
in the test data set with respect to regular records in an attempt to increase both 
the accuracy and recall of outlier detection. In any case, it’s important to know 
the biases in any algorithm that might be used to detect outliers and to specially 
prepare the training data set in order to make the resulting model effective. In 
practical applications, outlier detection models need to be updated frequently 
as the characteristics of an outlier changes over the time, and hence the rela-
tionship between outliers and normal records changes as well. In constant real 
time data streams, outlier detection creates additional challenges because of 
the dynamic distribution of the data and dynamic relationships in the data 
(Sadik & Gruenwald, 2013). Outlier detection remains one of the most pro-
found applications of data mining that impacts the majority of population 
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through financial transaction monitoring, fraud prevention, and early identifi-
cation of anomalous activity in the context of security.
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CHAPTER 12

In this chapter we will focus on an important component of data set preparation 
for predictive analytics: feature selection. An overused rubric in data mining cir-
cles is that 80% of the analysis effort is spent on data cleaning and preparation 
and only 20% is typically spent on modeling. In light of this it may seem strange 
that this book has devoted more than a dozen chapters to modeling techniques 
and only a couple to data preparation! However, data cleansing and preparation 
are things that are better learned through experience and not so much from a 
book. That said, it is essential to be conversant with the many techniques that are 
available for these important early process steps. We are not going to be focus-
ing on data cleaning in this chapter, which was partially covered in Chapter 2 
Data Mining Process but on reducing a data set to its essential characteristics or 
features. This process goes by various terms: feature selection, dimension reduc-
tion, variable screening, key parameter identification, attribute weighting. (Tech-
nically, there is a subtle difference between dimension reduction and feature 
selection. Dimension reduction methods—such as principal component anal-
ysis, discussed in Section 12.2—combine or merge actual attributes in order to 
reduce the number of attributes of a raw data set. Feature selection methods 
work more like filters that eliminate some attributes.)

We start out with a brief introduction to feature selection and the need for this 
preprocessing step. There are fundamentally two types of feature selection pro-
cesses: filter type and wrapper type. Filter approaches work by selecting only 
those attributes that rank among the top in meeting certain stated criteria (Blum, 
1997; Yu, 2003). Wrapper approaches work by iteratively selecting, via a feed-
back loop, only those attributes that improve the performance of an algorithm. 
(Kohavi, 1997) Among the filter-type methods, we can classify further based 
on the data types: numeric versus nominal. The most common wrapper-type 
methods are the ones associated with multiple regression: stepwise regression, 
forward selection, and backward elimination. We will explore a few numeric 
filter-type methods: principal component analysis (PCA), which is strictly speak-
ing a dimension reduction method; information gain–based filtering; and one 
categorical filter-type method: chi-square-based filtering. We will briefly discuss, 
using a RapidMiner implementation, the two wrapper-type methods.

Feature Selection
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12.1 � CLASSIFYING FEATURE SELECTION METHODS

There are two powerful technical motivations for incorporating feature selection in 
the data mining process. Firstly, a data set may contain highly correlated attributes, 
such as the number of items sold and the revenue earned by the sales of the item. 
We are typically not gaining any new information by including both of these attri-
butes. Additionally, in the case of multiple regression–type models, if two or more 
of the independent variables (or predictors) are correlated, then the estimates of 
coefficients in a regression model tend to be unstable or counter intuitive. This is 
the multicollinearity discussed in Section 5.1. In the case of algorithms like naïve 
Bayesian classifiers, the attributes need to be independent of each other. Further, 
the speed of algorithms is typically a function of the number of attributes. So by 
using only one among the correlated attributes we improve the performance.

Secondly, a data set may also contain redundant information that does not 
directly impact the predictions: as an extreme example, a customer ID number 
has no bearing on the amount of revenue earned from the customer. Such attri-
butes may be filtered out by the analyst before the modeling process may begin. 
However, not all attribute relationships are that clearly known in advance. In 
such cases, we must resort to computational methods to detect and eliminate 
attributes that add no new information. The key here is to include attributes 
that have a strong correlation with the predicted or dependent variable.

So, to summarize, feature selection is needed to remove independent variables that 
may be strongly correlated to one another, and to make sure we keep independent 
variables that may be strongly correlated to the predicted or dependent variable.

Feature selection in predictive analytics refers to the 
process of identifying the few most important variables 
or attributes that are essential in a model for an accurate 
prediction. In today’s world of big data and high speed 
computing, one might be forgiven for asking, why 
bother? What is the reason to filter any attributes when 
the computing horsepower exists? For example, some 
argue that it is redundant trying to “fit” a model to data; 
rather we should simply use a fast brute-force approach 
to sift through data to identify meaningful correlations 
and make decisions based on this (Bollier, 2010).

However models are still useful for many reasons. 
Models can improve decision making and help 

advance knowledge. Blindly relying on correlations 
to predict future states also has flaws. The now 
classic “My TiVo thinks I’m gay” example (Zaslow, 
2002) illustrated how the TiVo recommendation 
engine, which works on large data and correlations, 
resulted in a humorous mismatch for a customer. 
As long we need to use models, feature selection 
will be an important step in the process. Feature 
selection serves a couple of purposes: it optimizes 
the performance of the data mining algorithm and it 
makes it easier for the analyst to interpret the outcome 
of the modeling. It does this by reducing the number 
of attributes or features that we must contend with.

MOTIVATION FOR FEATURE SELECTION
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We may apply feature selection methods before we start the modeling process 
and filter out unimportant attributes or we may apply feature selection meth-
ods iteratively within the flow of the data mining process. Depending upon 
the logic, we have two feature selection schemes: filter schemes or wrapper 
schemes. The filter scheme does not require any learning algorithm, whereas 
the wrapper type is optimized for a particular learning algorithm. In other 
words, the filter scheme can be considered “unsupervised” and the wrapper 
scheme can be considered a “supervised” feature selection method. The filter 
model is commonly used in the following scenarios:

	 n	� When the number of features or attributes is really large
	 n	� When computational expense is a criterion

The chart in Figure 12.1 summarizes a high level taxonomy of feature selec-
tion methods, some of which we will explore in the following sections, as 
indicated. This is not meant to be a comprehensive taxonomy, but simply a 
useful depiction of the techniques commonly employed in data mining and 
described in this chapter.

12.2 � PRINCIPAL COMPONENT ANALYSIS
We will start with a conceptual introduction to PCA before showing the mathe-
matical basis behind the computation. We will then demonstrate how to apply 
PCA to a sample data set using RapidMiner.

Feature
Selection

Filter Type

Numerical
Data

Numerical
Data

PCA
(Section 12.2)

Chi-Square
(12.4)

Information
Gain (12.3)

Categorical
Data

Forward
Selection

(12.5)

Backward
Elimination

(12.6)

Wrapper Type

FIGURE 12.1
Taxonomy of common feature selection methods and the sections in this chapter that discuss them.
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Let us assume that we have a dataset with m attributes (or variables). These could 
be for example, commodity prices, weekly sales figures, number of hours spent 
by assembly line workers, etc.; in short any business parameter that can have 
an impact on a performance that is captured by a label or target variable. The 
question that PCA helps us to answer fundamentally is this: Which of these m 
attributes explain a significant amount of variation contained within the data 
set? PCA essentially helps to apply an 80/20 rule: Can a small subset of attributes 
(the 20%) explain 80% or more of the variation in the data? This sort of variable 
screening or feature selection will make it easy to apply other predictive modeling 
techniques and also make the job of interpreting the results easier.

PCA captures the attributes that contain the greatest amount of variability in 
the data set. It does this by transforming the existing variables into a set of 
“principal components” or new variables that have the following properties 
(van der Maaten et al., 2009):

	 n	� They are uncorrelated with each other.
	 n	� They cumulatively contain/explain a large amount of variance within 

the data.
	 n	� They can be related back to the original variables via weightage factors.

The original variables with very low weightage factors in their principal com-
ponents are effectively removed from the data set. The conceptual schematic in 
Figure 12.2 illustrates how PCA can help in reducing data dimensions with a 
hypothetical dataset of m variables.

Initial data
attribute 1
attribute 2
attribute 3

...
attribute m

PCA

PC 1
PC 1 and PC 2

alone account for
more than 95% of

the variance

Transformed data used in model

PC 1 = w1* attribute 1 + w4* attribute 4 + w7* attribute 7
PC 2 = w2* attribute 2 + w5* attribute 5

(All other weights ~ 0.00)

PC 2
PC 3

PC m
...

FIGURE 12.2
A conceptual framework illustrating the effectiveness of using PCA for feature selection. The final data set 
includes only PC1 and PC2.
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12.2.1 � How it Works
The key task is computing the principal components, zm, which have the prop-
erties that were described just above. Consider the case of just two variables: 
v1 and v2. When the variables are visualized using a scatterplot, we would see 
something like the one shown in Figure 12.3.

As can be seen, v1 and v2 are correlated. But we could transform v1 and v2 into 
two new variables z1 and z2, which meet our guidelines for principal compo-
nents, by a simple linear transformation. As seen in the chart, this amounts to 
plotting the points along two new axes: z1 and z2. Axis z1 contains the max-
imum variability, and one can rightly conclude that z1 explains a significant 
majority of the variation present in the data and is the first principal compo-
nent. z2, by virtue of being orthogonal to z1, contains the next highest amount 
of variability. Between z1 and z2 we can account for (in this case of two vari-
ables) 100% of the total variability in the data. Furthermore, z1 and z2 are 
uncorrelated. As we increase the number of variables, vm, we may find that 
only the first few principal components are sufficient to express all the data 
variances. The principal components, zm, are expressed as a linear combination 
of the underlying variables, vm:

	zm =
∑

wi*xi	 (12.1)

When we extend this logic to more than two variables, the challenge is to 
find the transformed set of principal components using the original vari-
ables. This is easily accomplished by performing an eigenvalue analysis of the 
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FIGURE 12.3
Transforming variables to a new basis is at the core of PCA.
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covariance matrix of the original attributes.1 The eigenvector associated with 
the largest eigenvalue is the first principal component; the eigenvector asso-
ciated with the second largest eigenvalue is the second principal component 
and so on. The covariance explains how two variables vary with respect to 
their corresponding mean values—if both variables tend to stay on the same 
side of their respective means, the covariance would be positive, if not it 
would be negative. (In statistics, covariance is also used in the calculation of 
correlation coefficient.)

	Covij = E[ViVj] − E[Vi]E[Vj]	 (12.2)

where expected value E[v] = vk P(v = vk). For the eigenvalue analysis, a matrix 
of such covariances between all pairs of variables vm is created. The reader is 
referred to standard textbooks on matrix methods or linear algebra for more 
details behind the eigenvalue analysis (Yu, 2003).

12.2.2 � How to Implement
In this section, we will start with a publicly available data set2 and use 
RapidMiner to perform the PCA. Furthermore, for illustrative reasons, we 
will work with nonstandardized or nonnormalized data. In the next part we 
will standardize the data and explain why it may be important sometimes 
to do so.

The data set includes information on ratings and nutritional information on 
77 breakfast cereals. There are a total of 16 variables, including 13 numerical 
parameters (Table 12.1). The objective is to reduce this set of 13 numerical 
predictors to a much smaller list using PCA.

Step 1: Data Preparation
Remove the nonnumeric parameters “Cereal name,” “Manufacturer,” and 
“Type (hot or cold),” because PCA can only work with numeric attributes. 
These are columns A, B, and C. (In RapidMiner, we can convert these into ID 
attributes if needed for reference later. This can be done during the import of 
the data set into RapidMiner during the next step if needed; in this case we will 
simply remove these variables. The Select Attributes operator may also be used 
following the Read Excel operator to remove these variables.)

1Let A be an n × n matrix and x be an n × 1 vector. Then the solution to the vector equation [A][x] = 
λ[x], where λ is a scalar number, involves finding those values of λ for which the above equation is 
satisfied. The values of λ are called eigenvalues and the corresponding solutions for x (x ≠ 0) are called 
eigenvectors.
2http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html and http://lib.stat.cmu.edu/DASL/
Datafiles/Cereals.html.



Table 12.1  Breakfast cereals data set for dimension reduction using PCA

name mfr type calories protein fat sodium fiber carbo sugars potass vitamins shelf weight cups rating

100%_Bran N C 70 4 1 130 10 5 6 280 25 3 1 0.33 68.402973
100%_Natural_
Bran

Q C 120 3 5 15 2 8 8 135 0 3 1 1 33.983679

All-Bran K C 70 4 1 260 9 7 5 320 25 3 1 0.33 59.425505
All-Bran_with_
Extra_Fiber

K C 50 4 0 140 14 8 0 330 25 3 1 0.5 93.704912

Almond_Delight R C 110 2 2 200 1 14 8 -1 25 3 1 0.75 34.384843
Apple_
Cinnamon_
Cheerios

G C 110 2 2 180 1.5 10.5 10 70 25 1 1 0.75 29.509541

Apple_Jacks K C 110 2 0 125 1 11 14 30 25 2 1 1 33.174094

Basic_4 G C 130 3 2 210 2 18 8 100 25 3 1.33 0.75 37.038562
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Read the Excel file into RapidMiner: this can be done using the standard Read 
Excel operator as described in earlier sections.

Step 2: PCA Operator
Type in the keyword “pca” in the operator search field and drag and drop the 
Principal Component Analysis operator into the main process window. Connect 
the output of Read Excel into the “Example set input” or “exa” port of the PCA 
operator.

The three available parameter settings for dimensionality reduction are none, 
keep variance, and fixed number. Here we use keep variance and leave the variance 
threshold at the default value of 0.95 or 95% (see Figure 12.4). The variance 
threshold selects only those attributes that collectively account for or explain 
95% (or any other value set by user) of the total variance in the data. Connect 
all output ports from the PCA operator to the results ports.

Step 3: Execution and Interpretation
By running the analysis as configured above, RapidMiner will output sev-
eral tabs in the results panel (Figure 12.5). By clicking on the PCA tab, we 
will see three PCA related tabs—Eigenvalues, Eigenvectors, and Cumulative 
Variance Plot.

Using Eigenvalues, we can obtain information about the contribution to 
the data variance coming from each principal component individually and 
cumulatively.

If, for example, our variance threshold is 95%, then PC 1, PC 2, and PC 3 are 
the only principal components that we need to consider because they are suf-
ficient to explain nearly 97% of the variance. PC 1 contributes to a majority of 
this variance, at about 54%.

We can then “deep dive” into these three components and identify how they 
are linearly related to the actual or real parameters from the data set. At this 
point we consider only those real parameters that have significant weightage 

FIGURE 12.4
Configuring the PCA operator.
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contribution to the each of the first three PCs. These will ultimately form the 
subset of reduced parameters for further predictive modeling.

The key question is how do we select the real variables based on this informa-
tion? RapidMiner allows us to sort the eigenvectors (weighting factors) for each 
PC and we can decide to choose the two to three highest (absolute) valued 
weighting factors for PCs 1 to 3. As seen from Figure 12.6, we have chosen 
the highlighted real attributes—calories, sodium, potassium, vitamins, and  
rating—to form the reduced data set. This selection was done by simply identi-
fying the top three attributes from each principal component.3

For the above example, PCA reduces the number of attributes from 13 to 5,  
a more than 50% reduction in the number of attributes that any model would 
need to realistically consider. One can imagine the improvement in perfor-
mance as we deal with the larger data sets that PCA enables. In practice, PCA 
is a very effective and widely used tool for dimension reduction, particularly 
when all attributes are numeric. It works for a variety of real-world applica-
tions, but it should not be blindly applied for variable screening. For most 
practical situations, domain knowledge should be used in addition to PCA 

3More commonly, only the top three principal components are directly selected for building 
subsequent models. We took this route here to explain how PCA, which is a dimension reduction 
method, can be applied for feature selection.

FIGURE 12.5
Output from PCA.
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analysis before eliminating any of the variables. Here are some observations 
that explain some of the risks to consider while using PCA.

	 1.	� The results of a PCA must be evaluated in the context of the data.
	  	� If the data is extremely noisy, then PCA may end up suggesting that the 

noisiest variables are the most significant because they account for most 
of the variation!

	  	� An analogy would be the total sound energy in a rock concert. If the 
crowd noise drowns out some of the high-frequency vocals or notes, 
PCA might suggest that the most significant contribution to the total 
energy comes from the crowd—and it will be right! But this does not 
add any clear value if one is attempting to distinguish which musical 
instruments are influencing the harmonics, for example.

	 2.	� Adding uncorrelated data does not always help. Neither does adding 
data that may be correlated, but irrelevant.

	  	� When we add more parameters to our data set, and if these parameters 
happen to be random noise, we are effectively led back to the same 
situation as the first point above. On the other hand, as analysts we 
also have to exercise caution and watch out for spurious correlations. 
As an extreme example, it may so happen that there is a correlation 
between the number of hours worked in a garment factory and 

FIGURE 12.6
Selecting the reduced set of attributes using the Eigenvectors tab from the PCA operator.
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pork prices (an unrelated commodity) within a certain period of 
time. Clearly this correlation is probably pure coincidence. Such 
correlations again can muddy the results of a PCA. Care must be taken 
to winnow the data set to include variables that make business sense 
and are not subjected to many random fluctuations before applying a 
technique like tPCA.

	 3.	� PCA is very sensitive to scaling effects in the data.

If we examine the data in the above example closely, we will see that the top 
attributes that PCA helped identify as the most important ones also have the 
widest range (and standard deviation) in their values. For example, potassium 
ranges from –1 to 330 and sodium ranges from 1 to 320. Comparatively, most 
of the other factors range in the single or low double digits. As expected, these 
factors dominate PCA results because they contribute to the maximum vari-
ance in the data. What if there was another factor such as sales volume, which 
would potentially range in the millions (of dollars or boxes), were to be con-
sidered for a modeling exercise? Clearly it would mask the effects of any other 
attribute.

To minimize scaling effects, we can range normalize the data (using for exam-
ple, the Normalize operator). When we apply this data transformation, all attri-
butes are reduced to a range between 0 and 1 and scale effects will not matter 
anymore. But what happens to the PCA results?

As Figure 12.7 shows, we now need eight PCs to account for the same 95% 
total variance. As an exercise, you can use the eigenvectors to filter out the 

FIGURE 12.7

Interpreting RapidMiner output for Principal Component Analysis.
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attributes that are included in these eight PCs and you will find that (applying 
the top three rule for each PC as before), you have not eliminated any of the 
attributes!

This brings us to the next section on feature selection methods that are not 
scale sensitive and also work with nonnumerical datasets, which were two of 
the limitations with PCA.

12.3 � INFORMATION THEORY–BASED FILTERING FOR 
NUMERIC DATA

In Chapter 4 we encountered the concepts of information gain and gain ratio. 
Recall that both of these methods involve comparing the information exchanged 
between a given attribute and the target or label attribute (Peng et al., 2005). 
As we discussed in Section 12.1, the key to feature selection is to include 
attributes that have a strong correlation with the predicted or dependent vari-
able. With these techniques, we can rank attributes based on the amount of 
information gain and then select only those that meet or exceed some (arbi-
trarily) chosen threshold or simply select the top k (again, arbitrarily chosen) 
features.

Let us revisit the golf example we discussed first in Chapter 4. The data is 
presented here again for convenience in Figure 12.8a. When we apply the 
information gain calculation methodology that was discussed in Chapter 4 
to compute information gain for all attributes (see Table 4.2), we will arrive 
at the feature ranking in Figure 12.8b in terms of their respective “influence” 
on the target variable “Play.” This can be easily done using the Weight by 
Information Gain operator in RapidMiner. The output looks almost identical 
to the one shown in Table 4.2, except for the slight differences in the infor-
mation gain values for Temperature and Humidity. The reason is that for 
that data set, we had converted the temperature and humidity into nominal 
values before computing the gains. In this case, we use the numeric attributes 
as they are. So it is important to pay attention to the discretization of the 
attributes before filtering. Use of information gain feature selection is also 
restricted to cases where the label is nominal. For fully numeric datasets, 
where the label variable is also numeric, PCA or correlation-based filtering 
methods are commonly used.

Figure 12.9 describes a process that uses the sample Golf data set avail-
able in RapidMiner. The various steps in the process convert numeric attri-
butes, Temperature and Humidity, into nominal ones. In the final step, we 
apply the Weight by Information Gain operator to both the original data and 
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converted data set in order to show the difference between the gain com-
puted using different data types. The main point to observe is that the gain 
computation depends not only upon the data types, but also how the nomi-
nal data is discretized. For example, we get slightly different gain values (see  
Table 12.2) if we divide Humidity into three bands (high, medium, and low) 
as opposed to only two bands (high and low). The reader can test these vari-
ants very easily using the process described. In conclusion, we select the top-
ranked attributes. In this case, they would be Outlook and Temperature if 
we choose the nondiscretized version, and Outlook and Humidity in the 
discretized version.

FIGURE 12.8a
Revisiting the golf example for feature selection.

FIGURE 12.8b
Results of information gain–based feature selection.
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12.4 � CHI-SQUARE-BASED FILTERING FOR  
CATEGORICAL DATA

In many cases our data sets may consist of only categorical (or nominal) attri-
butes. In this case, what is a good way to distinguish between high influence 
attributes and low or no influence attributes?

A classic example of this scenario is the gender selection bias. Suppose we have 
data about the purchase of a big-ticket item like a car or a house. Can we verify 
the influence of gender on purchase decisions? Are men or women the primary 
decision makers when it comes to purchasing big-ticket items? For example, is 
gender a factor in color preference of a car? Here attribute 1 would be gender 

FIGURE 12.9
Process to discretize the numeric Golf data set before running information gain–based feature selection.

Table 12.2  Results of Information Gain Feature Selection

Attribute Info Gain Weight (Not Discretized) Info Gain Weight (Discretized)

Outlook 0.247 0.247
Temperature 0.113 0.029
Humidity 0.102 0.104
Wind 0.048 0.048
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and attribute 2 would be the color. A chi-square test would reveal if there is 
indeed a relationship between these two attributes. If we have several attributes 
and wish to rank the relative influence of each of these on the target attribute, 
we can still use the chi-square statistic.

Let us go back to the golf example in Figure 12.10—this time we have 
converted all numeric attributes into nominal ones. Chi-square analysis 
involves counting occurrences (of number of sunny days or windy days) and 
comparing these variables to the target variable based on the frequencies of 
occurrences. The chi-square test checks if the frequencies of occurrences 
across any pair of attributes, such as Outlook = overcast and Play = yes, are 
correlated. In other words, for the given Outlook type, overcast, what is the 
probability that Play = yes (existence of a strong correlation)? The multipli-
cation law of probabilities states that if event A happening is independent 
of event B, then the probabilities of A and B happening together is simply 
pA * pB. The next step is to convert this joint probability into an “expected 
frequency,” which is given by pA * pB * N, where N is the sum of all occur-
rences in the data set.

For each attribute, a table of observed frequencies, such as the one shown 
in Table 12.3, is built. This is called a contingency table. The last column 
and row (the margins) are simply the sums in the corresponding rows or 
columns as you can verify. Using the contingency table, a corresponding 
expected frequency table can be built using the expected frequency defini-
tion (pA * pB *N) from which the chi-square statistic is then computed by 

FIGURE 12.10
Converting the golf example set into nominal values for chi-square feature selection.
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comparing the difference between the observed frequency and expected fre-
quency for each attribute. The expected frequency table for Outlook is shown 
in Table 12.4.

The expected frequency for the event [Play = no and Outlook= sunny] is calculated 
using our expected frequency formula as (5/14 * 5/14 *14) =1.785 and is entered 
in the first cell as shown. Similarly, the other expected frequencies are calculated. 
The formula for the chi-square statistic is the summation of the square of the dif-
ferences between observed and expected frequencies, as given in Equation 12.2:

	χ
2 =

∑∑
(fo − fe)

2/fe 	 (12.2)

where fo is the observed frequency and fe is the expected frequency. The test of 
independence between any two parameters is done by checking if the observed 
chi-square is less than a critical value that depends upon the confidence level 
chosen by the user (Black, 2007). In this case of feature weighting, we simply 
gather all the observed chi-square values and use them to rank the attributes. 
The ranking of attributes for our golf example is generated using the process 
described in Figure 12.11 and is shown in the table of observed chi-square val-
ues in Figure 12.12. Just like in information gain feature selection, most of the 
operators shown in the process are simply transforming the data into nominal 
values to generate it in the form shown in Figure 12.10.

Compare the output of the chi-square ranking to the information gain–based 
ranking (for the nominalized or discretized attributes) and you will see that 
the ranking is identical.

Table 12.3  Contingency Table of Observed Frequencies for Outlook and the 
Label Attribute, Play

Outlook = sunny overcast rain Total

Play = no 3 0 2 5
Play = yes 2 4 3 9
Total 5 4 5 14

Table 12.4  Expected Frequency Table

Outlook = sunny overcast rain Total

Play = no 1.785714 1.428571 1.785714 5
Play = yes 3.214286 2.571429 3.214286 9
Total 5 4 5 14
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Note that the “Normalize weights” option is sometimes also used, which is a 
range normalization onto the interval 0 to 1.

12.5 � WRAPPER-TYPE FEATURE SELECTION
In this section of the chapter we will briefly introduce wrapper scheme feature 
reduction methods by using a linear regression example. As explained earlier, 
the wrapper approach iteratively chooses features to add or to remove from the 
current attribute pool based on whether the newly added or removed attribute 
improves the accuracy.

FIGURE 12.11
Process to rank attributes of the Golf data set by the chi-square statistic.

FIGURE 12.12
Results of the attribute weighting by the chi-square method.
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Wrapper-type methods originated from the need to reduce the number of 
attributes that are needed to build a high-quality regression model. A very 
thorough way to build regression models is something called the “all possible 
regressions” search procedure. For example, with thre attributes, v1, v2, and v3, 
we could build the different regression models in Table 12.5.

In general, if a data set contains k different attributes, then conducting all 
possible regression searches implies that we build 2k – 1 separate regres-
sion models and pick the one that has the best performance. Clearly this is 
impractical.

A better way, from a computational resource consumption point of view, to 
do this search would be to start with one variable, say v1, and build a baseline 
model. Then add a second variable, say v2, and build a new model to compare 
with the baseline. If the performance of the new model, for example, the R2 
(see Chapter 5), is better than that of the baseline, we make this model the new 
baseline, add a third variable, v3, and proceed in a similar fashion. If however, 
the addition of the second attribute, v2, did not improve the model signifi-
cantly (over some arbitrarily prescribed level of improvement in performance), 
then we pick a new attribute v3, and build a new model that includes v1 and 
v3. If this model is better than the model that included v1 and v2, we proceed 
to the next step, where we will consider a next attribute v4, and build a model 
that includes v1, v3, and v4. In this way, we step forward selecting attributes 
one by one until we achieve a desired level of model performance. This process 
is called forward selection.4

A reverse of this process is where we start our baseline model with all the attri-
butes, v1, v2, …, vk and for the first iteration, remove one of the variables, vj, 
and construct a new model. However, how do we select which vj to remove? 

4Forward selection is considered a “greedy” approach, and does not necessarily yield the globally 
optimum solution.

Table 12.5  All Possible Regression Models with Three Attributes

Model Independent Variables Used

1 v1 alone
2 v2 alone
3 v3 alone
4 v1 and v2 only
5 v1 and v3 only
6 v2 and v3 only
7 v1, v2, and v3 all together
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Here, it is typical to start with a variable that has the lowest t-stat value, as you 
will see in the following case study.5 If the new model is better than the base-
line, it becomes the new baseline and the search continues to remove variables 
with the lowest t-stat values until some stopping criterion is met (usually if the 
model performance is not significantly improved over the previous iteration). 
This process is called backward elimination.

As you can see, the variable selection process wraps around the modeling 
procedure, hence the name for these classes of feature selection. We will now 
examine a case study, using data from the Boston Housing6 model first intro-
duced in Chapter 5, to demonstrate how to implement the backward elim-
ination method using RapidMiner. You may recall that the data consists of  
13 predictors and 1 response variable. The predictors include physical char-
acteristics of the house (such as number of rooms, age, tax, and location) 
and neighborhood features (school, industries, zoning), among others. The 
response variable is the median value (MEDV) of the house in thousands of 
dollars. These 13 independent attributes are considered to be predictors for 
the target or label attribute. The snapshot of the data table is shown again in  
Table 12.6 for continuity.

12.5.1 � Backward Elimination to Reduce the Data Set

Our goal here is to build a high-quality multiple regression model that includes 
as few attributes as possible, without compromising the predictive ability of 
the model.

The logic used by RapidMiner for applying these techniques is not “linear,” but 
a nested logic. The graphic in Figure 12.13 explains how this nesting was used in 
setting up the training and testing of the Linear Regression operator for the anal-
ysis we did in Chapter 5 on the Boston Housing data. The arrow indicates that 
the training and testing process was nested within the Split Validation operator.

In order to apply a wrapper-style feature selection method such as backward 
elimination, we need to tuck the training and testing process inside another 
subprocess, a learning process. The learning process is now nested inside the 
Backward Elimination operator. We therefore now have double nesting as sche-
matically shown in Figure 12.13. Next, Figure 12.14 shows how to config-
ure the Backward Elimination operator in RapidMiner. Double clicking on the 
Backward Elimination operator opens up the learning process ,which can now 
accept the Split Validation operator we have used many times.

5RapidMiner typically tries removing attributes one after the other. Vice versa for forward selection: first 
it tries out all models having just one attribute. It selects the best, then adds another variable, again 
trying out every option.
6We use the dataset described and presented here: http://archive.ics.uci.edu/ml/datasets/Housing.



Table 12.6  Sample view of the Boston Housing data set

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT MEDV

0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24
0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6
0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.9 5.33 36.2
0.02985 0 2.18 0 0.458 6.43 58.7 6.0622 3 222 18.7 394.12 5.21 28.7
0.08829 12.5 7.87 0 0.524 6.012 66.6 5.5605 5 311 15.2 395.6 12.43 22.9
0.14455 12.5 7.87 0 0.524 6.172 96.1 5.9505 5 311 15.2 396.9 19.15 27.1



FIGURE 12.13
Wrapper function logic used by RapidMiner.

FIGURE 12.14
Configuring the Backward Elimination operator. a) Selecting the Backward Elimination nested operator and b) configuring the parameters.
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The Backward Elimination operator can now be filled in with the Split Validation 
operator and all the other operators and connections required to build a regres-
sion model. The process of setting these up is exactly the same as discussed in 
Chapter 5 and hence is not repeated here. Now let us look at the configuration 
of the Backward Elimination operator. Here we can specify several parameters to 
enable feature selection. The most important one is the “stopping behavior.” 
Our choices are “with decrease,” “with decrease of more than,” and “with sig-
nificant decrease.” The first choice is very parsimonious—a decrease from one 
iteration to the next will stop the process. But if we pick the second choice, we 
have to now indicate a “maximal relative decrease.” In this example, we have 
indicated a 10% decrease. Finally, the third choice is very stringent and requires 
achieving some desired statistical significance by allowing you to specify an 
alpha level. But we have not said by how much the performance parameter 
should decrease yet! This is specified “deep inside” the nesting: all the way at 
the Performance operator that was selected in the Testing window of the Split 
Validation operator. In this example, the performance criterion was “squared 
correlation.” For a complete description of all the other Backward Elimination 
parameters, the RapidMiner help can be consulted.

There is one more step that may be helpful to complete before running this 
model. Simply connecting the Backward Elimination operator ports to the out-
put will not show us the final regression model equation. To be able to see 
that, we need to connect the “exa” port of the Backward Elimination operator to 
another Linear Regression operator in the main process. The output of this oper-
ator will contain the model, which can be examined in the Results perspective. 
The top level of the final process is shown in Figure 12.15.

FIGURE 12.15
Final setup of the backward elimination wrapper process.
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12.5.2 � What Variables have been Eliminated by Backward 
Elimination?

Comparing the two regression equations (Figure 12.16a below and in Chapter 
5, see Figure 5.6a) we can see that nine attributes have been eliminated. Per-
haps the 10% decrease was too aggressive. As it happens, the R2 for the final 
model with only three attributes was only 0.678. If we were to change the 
stopping criterion to a 5% decrease, we will end up with an R2 of 0.812 and 
now have 8 of the 13 original attributes (Figure 12.16b). You can also see that 
the regression coefficients for the two models are different as well. The final 
judgment on what is the right criterion and its level can only be made with 
experience with the data set and of course, good domain knowledge.

Each iteration using a regression model either removes or introduces a vari-
able, which improves model performance. The iterations stop when a preset 
stopping criterion or no change in performance criterion (such as adjusted R2 

FIGURE 12.16a
Aggressive feature selection.

FIGURE 12.16b
A more permissive feature selection with backward elimination.
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or RMS error) is reached. The inherent advantage of wrapper-type methods are 
that multicollinearity issues are automatically handled. However, you get no 
prior knowledge about the actual relationship between the variables. Applying 
forward selection is very similar and is left as an exercise for the reader.

CONCLUSION
This chapter covered the basics of a very important part of the overall data min-
ing paradigm: feature selection or dimension reduction. A central hypothesis 
among all the feature selection methods is that good feature selection results in 
attributes or features that are highly correlated with the class, yet uncorrelated 
with each other (Hall, 1999). We presented a high-level classification of feature 
selection techniques and explored each of them in some detail. As stated at the 
beginning of this chapter, dimension reduction is best understood with real 
practice. To this end, we recommend readers apply all the techniques described 
in the chapter on all the data sets provided. We saw that the same technique 
can yield quite different results based on the selection of analysis parameters. 
This is where data visualization can play an important role. Sometimes, exam-
ining a correlation plot between the various attributes, like in a scatterplot 
matrix, can provide valuable clues about which attributes are likely redundant 
and which ones can be strong predictors of the label variable. While there is 
usually no substitute for domain knowledge, sometimes data is simply too 
large or mechanisms are unknown. This is where feature selection can actually 
help.
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CHAPTER 13

If you have never attempted any analysis using RapidMiner, this chapter 
would be the best place to start. In this chapter we will turn our attention 
from data mining processes to the actual tool set that we need to use to 
accomplish data mining. Our goal for this chapter is to get rid of any trep-
idation you may have about using the tool if this entire field of analytics is 
totally new to you. If you have done some data mining with RapidMiner but 
gotten frustrated because you got stuck somewhere during your process of 
self-learning using this very powerful set of tools, this chapter should hope-
fully get you “unstuck.”

RapidMiner is an open source data mining platform developed and maintained 
by RapidMiner Inc. The software was previously known as YALE (Yet Another 
Learning Environment) and was developed at the University of Dortmund in 
Germany (Mierswa, 2006).

RapidMiner Studio is the GUI-based software where data mining and predic-
tive analytics workflows can be built and deployed. Some of the advanced fea-
tures are offered at a premium. In this chapter we will review some of the 
common functionalities and terminologies of the RapidMiner Studio plat-
form. Even though we are zoning in on one specific data mining tool, the 
approach, process, and terms are very similar to other commercial and open 
source Data Mining tools.

We start out with a brief introduction to the RapidMiner Studio GUI to set the 
stage. The first step in any data analytics exercise is of course to bring the data 
to the tool, and this is what we will cover next. Once the data is imported, 
you may want to actually visualize the data and if necessary select subsets or 
transform the data. We cover basic visualization, followed by selecting data 
by subsets. We will provide an overview of the fundamental data scaling and 
transformation tools and explain data sampling and missing value handling 
tools. We will then present some advanced capabilities of RapidMiner such as 
process design and optimization.

Getting Started with RapidMiner
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13.1 � USER INTERFACE AND TERMINOLOGY
13.1.1 � Introducing the RapidMiner Graphical User Interface
We start by assuming that you have already downloaded and installed the 
software on your computer.1 The current version at the time of this writ-
ing is version 6.0. Once you launch RapidMiner, you will see the screen in  
Figure 13.1. (The News section will only be seen if you are connected to the 
Internet.)

We will only introduce two of the main sections highlighted in the figure 
above, as the rest are self-explanatory.

Perspectives: The RapidMiner GUI offers three main perspectives. The 
Home or Welcome perspective, shown by the little home icon (version 
5.3: indicated by the “i” icon) is what you see when you first launch the 
program. The Design perspective (version 5.3: indicated by a notepad and 
pencil icon) is where you create and design all the data mining processes 
and can be thought of as the canvas where you will create all your data 
mining programs and logic. This can also be thought of as a workbench. 
The Results perspective (indicated in 5.3 also by the chart icon) is where 
all the recently executed analysis results are available. You will be switching 
back and forth between the Design and Results perspective several times 
during a session. Version 6 also adds a wizard-style functionality that allows 
starting from predefined processes for applications such as direct market-
ing, predictive maintenance, customer churn modeling, and sentiment  
analysis.

Views: When you enter a given perspective, there will be several display ele-
ments available. For example, in the Design perspective, you have a tab for all 
the available operators, your stored processes, help for the operators, and so on.  
These “views” can be rearranged, resized, and removed or added to a given 
perspective. The controls for doing any of these are shown right on the top of 
each view tab.

First-time users sometimes accidentally “delete” some of the views. The easiest 
way to bring back a view is to use the main menu item View→Show View and 
the select the view that you lost.

13.1.2 � RapidMiner Terminology
There are a handful of terms that one must be comfortable with to develop 
proficiency in using RapidMiner. These are explained with the help of  
Figure 13.2.

1Head over to http://rapidminer.com/download-rapidminer/ if you have not done so yet.



FIGURE 13.1
Launch view of RapidMiner 6.0.



FIGURE 13.2
Activating different views inside RapidMiner.
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Repository: A repository is a folder-like structure inside RapidMiner where  
users can organize their data, processes, and models. Your repository is thus a 
central place for all your data and analysis processes. When you launch Rapid-
Miner for the first time, you will be given an option to set up your New Local 
Repository (Figure 13.3). If for some reason you did not do this correctly, you 
can always fix this by clicking on the New Repository icon (the one with a 
green “+” mark) in the Repositories view panel. When you click that icon, you 
will get a dialog box like the one shown in Figure 13.3 where you can specify 
the name of your repository under “Alias” and its location under “Root Direc-
tory.” By default, a standard location automatically selected by the software is 
checked, which can be unchecked if you want to specify a different location.

Within this repository, you can organize folders and subfolders to store your 
data, processes, results and models. The advantage of storing data sets to be 
analyzed in the repository is that metadata describing those data sets is stored 
alongside. This metadata is propagated through the process as you build it. 
Metadata is basically data about your data, and contains information such as 
the number of rows and columns, types of data within each column, miss-
ing values if any, and statistical information (mean, standard deviation, and  
so on).

Attributes and examples: A data set or data table is a collection of columns 
and rows of data. Each column represents a type of measurement. For example, 
in the classic Golf data set (Figure 13.4) that is used to explain many of the 
algorithms within this book, we have columns of data containing Temperature 
levels and Humidity levels. These are numeric data types. We also have a col-
umn that identifies if a day was windy or not or if a day was sunny, overcast, or 
rainy. These columns are categorical or nominal data types. In all cases, these 
columns represent attributes of a given day that would influence whether golf 
is played or not. In RapidMiner terminology, columns of data such as these 
are called attributes. Other commonly used names for attributes are variables 

FIGURE 13.3
Setting up a repository on your local machine.
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or factors or features. One set of values for such attributes that form a row is 
called an example in RapidMiner terminology. Other commonly used names 
for examples are records, samples, or instances. An entire data set (rows of 
examples) is called an example set in RapidMiner.

Operator: An operator is an atomic piece of functionality (which in fact is 
a chunk of encapsulated code) performing a certain task. This data min-
ing task can be any of the following: importing a data set into the Rapid-
Miner repository, cleaning it by getting rid of spurious examples, reducing 
the number of attributes by using feature selection techniques, building 
predictive models, or scoring new data sets using models built earlier. Each 
task is handled by a chunk of code, which is packaged into an operator (see 
Figure 13.5).

Thus we have an operator for importing an Excel spreadsheet, an operator 
for replacing missing values, an operator for calculating information gain–
based feature weighting, an operator for building a decision tree, and an 
operator for applying a model to new unseen data. Most of the time an oper-
ator requires some sort of input and delivers some sort of output (although 

FIGURE 13.4
RapidMiner terminology: attributes and examples.
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there are some operators that do not require an input). Adding an operator 
to a process adds a piece of functionality to the workflow. Essentially this 
amounts to inserting a chunk of code to a data mining program and thus 
operators are nothing but convenient visual mechanisms that will allow 
RapidMiner to be a GUI-driven application rather than a programming lan-
guage like R or Python.

Process: A single operator by itself cannot perform data mining. All data min-
ing and predictive analytics problem solving require a series of calculations and 
logical operations. There is typically a certain flow to these problems: import 
data, clean and prepare data, train a model to learn the data, validate the 
model and rank its performance, then finally apply the model to score new and 
unseen data. All of these steps can be accomplished by connecting a number 
of different operators, each uniquely customized for a specific task as we saw 
earlier. When we connect such a series of operators together to accomplish the 
desired data mining, we have built a process that can be applied in other con-
texts.A process that is created visually in RapidMiner is stored by RapidMiner as 
platform-independent XML code that can be exchanged between RapidMiner 
users (Figure 13.6). This allows different users in different locations and on 
different platforms to run your RapidMiner process on their data with minimal 
reconfiguration. All you need to do is send the XML code of your process to 
your colleague across the aisle (or across the globe). They can simply copy and 
paste the xml code in the XML tab in the Design perspective and switch back to 
the Process tab (or view) to see the process in its visual representation and run 
it to execute the defined functionality.

13.2 � DATA IMPORTING AND EXPORTING TOOLS
RapidMiner offers at least 20 different operators or ways to connect to your 
data. The data can be stored in a flat file such as a comma-separated values 
(CSV) file or spreadsheet, the data can be stored in a database such as a 
Microsoft Access table, or it can be stored in other proprietary formats such 
as SAS or Stata or SPSS, etc. If your data is in a database, you need to have at 
least a basic understanding of databases, database connections and queries 

FIGURE 13.5
An operator for building a decision tree.



FIGURE 13.6
Every process is automatically translated to an XML document.
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in order to use the operator properly. You may choose to simply connect to 
your data (which is stored in a specific location on disk) or you may choose 
to import the data set into your local RapidMiner repository itself so that 
it becomes available for any process within your repository and every time 
you open RapidMiner, this data set is available for retrieval. Either way, 
RapidMiner offers easy-to-follow wizards that will guide you through the 
steps. As you can see in Figure 13.7, when you choose to simply connect to 
data in a CSV file on disk using a Read CSV operator, you will drag and drop 
the operator to the main process window. Then you need to configure the 
Read CSV operator by clicking on the Import Configuration Wizard, which 
will lead you through a sequence of steps to read the data in.2 The search 
box at the top of the operator window is also very useful—if one knows 
even part of the operator name then it’s easy to find out if RapidMiner pro-
vides such an operator. For example, to see if there is an operator to handle 
CSV files, type “CSV” in the search field and both Read and Write will show 
up. Clear the search by hitting the red X. Using search is a quick way to 
navigate to the operators if you know some part of their name. Similarly 
try “principal” and you see the operator for principal component analysis 
even though you might not know where to look initially. Also, this search 
shows you the hierarchy of where the operators exist, which helps one learn 
where they are.

On the other hand, if you choose to import the data into your local Rapid-
Miner repository, you can click on the green down arrow in the Repositories 
tab (as shown in Figure 13.7) and select Import CSV File. You will immediately 
be presented with the same five-step data import wizard. In either case, the 
data import wizard consists of the following steps:

	 1.	� Select the file on the disk that should be read or imported.
	 2.	� Specify how the file should be parsed and how the columns are 

delimited. If your data has a comma “,” as the column separator in the 
configuration parameters, be sure to select it. By default, RapidMiner 
assumes that a “;” (semicolon) is the separator.

	 3.	� Annotate the attributes by indicating if the first row of your data set 
contains attribute names (which is usually the case). If you data set has 
first row names, then RapidMiner will automatically indicate this as 
“Name. If the first few rows of your data set has text or information, you 
will have to indicate that for each of the example rows. The available 
annotation choices are “Name,” “Comment,” and “Unit.” See the 
example in Figure 13.8.

2For this and the next few sections we will use the data from the Indian Liver Patients data set available 
here: http://archive.ics.uci.edu/ml/machine-learning-databases/00225/.



380 CHAPTER 13:  Getting Started with RapidMiner

FIGURE 13.7
Steps to read in a comma-separated values (CSV) file.

	 4.	� In this step we can change the data type of any of the imported 
attributes and identify whether each column or attribute are “regular” 
attributes or special ones. By default, RapidMiner autodetects the data 
types in each column. However, sometimes we may need to override 
this and indicate if a particular column is of a different data type. The 
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special attributes are columns that are used for identification (e.g., 
patient ID or employee ID or transaction ID) only or attributes that 
are to be predicted. These are called “label” attributes in RapidMiner 
terminology.

	 5.	� In this last step, if you are connecting to the data on disk using Read 
CSV, you simply hit Finish and you are done (Figure 13.9). If you are 
importing the data into a RapidMiner repository (using Import CSV 
File), you will be asked to specify the location in the repository  
for this.

When this process is finished, you should have either a properly connected 
data source on disk (for Read CSV) or a properly imported example set in 
your repository that you can use for any data mining process. Exporting 

FIGURE 13.8
Properly annotating the data.
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data from RapidMiner is possible in a similar way using the Write CSV 
operator.

13.3 � DATA VISUALIZATION TOOLS
Once you read a data set into RapidMiner, the next step is to explore the 
data set visually using a variety of tools. Before we jump into visualization, 
however, it is a good idea to check the metadata of the imported data to 
verify if we managed to get all the correct information. When the simple 
process described in Section 13.2 is run (be sure to connect the output of the 
read operator to the “res”ult connector of the process), we will get an output 
posted to the Results perspective of RapidMiner. You can see the data table 

FIGURE 13.9
Finishing the data import.
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to verify that indeed the data has been correctly imported under the Data tab  
on the left (see Figure 13.10).

By clicking on the Statistics tab (see Figure 13.11), we can examine the type, 
missing values, and basic statistics for all the imported data set attributes. 
Together the data and statistics tabs can tell us that there are 583 samples, 10 
regular attributes, and 1 special attribute (the label that was selected in step 4 
of the previous section). We can also identify the data type of each attribute 
(integer, real, or binomial), and some basic statistics. This high-level overview 
is a good way to ensure that your data set has been loaded correctly and you 
can now attempt to explore the data in more detail using the visualization 
tools described below.

There are a variety of visualization tools available for univariate (one attri-
bute), bivariate (two attributes), and multivariate analysis. Select the Charts 
tab in the Results perspective to access any of the visualization tools or 
plotter. General details about visualization are available in Chapter 3 Data 
Exploration.

13.3.1 � Univariate Plots
	 n	� Histogram: A density estimation for numeric plots and a counter for 

categorical ones.
	 n	� Quartile (Box and Whisker): Shows the mean value, median, standard 

deviation, some percentiles, and any outliers for each attribute.
	 n	� Series (or Line): Usually best used for time series data.

13.3.2 � Bivariate Plots
All 2D and 3D charts show dependencies between tuples (pairs, triads) of 
variables.3

	 n	� Scatter: The simplest of all 2D charts, which shows how one variable 
changes with respect to another. RapidMiner allows the use of 
color; you can color the points to add a third dimension to the 
visualization.

	 n	� Scatter Multiple: Allows you to fix one axis to one variable while cycling 
through the other attributes.

	 n	� Scatter Matrix: Lets you look at all possible pairings between attributes. 
Color as usual adds a third dimension. Be careful with this plotter 
because as the number of attributes increase, rendering all the charts 
can slow down processing.

3A 2D plot can also depict three dimensions, for example using color. Bubble plots can even depict four 
dimensions! This categorization is done somewhat loosely.



FIGURE 13.10
Results perspective that is shown when the data import process is successful.



FIGURE 13.11
Metadata is visible under the Statistics tab.
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	 n	� Density: Similar to a 2D scatter chart, except the background may be 
filled in with a color gradient corresponding to one of the attributes.

	 n	� SOM: Stands for a self-organizing map. It reduces the number of 
dimensions to two by applying transformations. Points that are 
“similar” along many attributes will be placed close together. It is 
basically a clustering visualization method. More details are in Chapter 
8 on clustering. Note that SOM (and many of the parameterized 
reports) does not run automatically so if you switch to that report you 
will see a blank screen until the inputs are set and the in the case of 
SOM the “calculate” button is pushed.

13.3.3 � Multivariate Plots
	 n	� Parallel: Uses one vertical axis for each attribute, thus there are as many 

vertical axes as there are attributes. Each row is displayed as a line in the 
chart. Local normalization is useful to understand the variance in each 
variable. However, a deviation plot works better for this.

	 n	� Deviation: Same as parallel, but displays mean values and standard 
deviations.

	 n	� Scatter 3D: Very similar to the scatter 2D chart but allows a three-
dimensional visualization of three attributes (four, if you include the 
color of the points)

	 n	� Surface: A surface plot is a 3D version of an area plot where the 
background is filled in.

These are not the only available plotters. Some additional ones are not 
described here such as pie, bar, ring, block charts, etc. Generating any of the 
plots using the GUI is pretty much self-explanatory. The only words of cau-
tion are that when you have a large data set, generating some of the graphics 
intensive multivariate plots can be quite time consuming depending upon the 
available RAM and processor speed.

13.4 � DATA TRANSFORMATION TOOLS
Many times the raw data is in a form that is not ideal for applying standard 
machine learning algorithms. For example, suppose you have categorical attri-
butes such as gender, and you want to predict purchase amounts based on 
(among several other attributes) the gender. In this case you want to convert 
the categorical (or nominal) attributes into numeric ones by a process called 
“dichotomization.” In the example above, we introduce two new variables called 
Gender=Male and Gender=Female, which can take (numeric) values of 0 or 1.

In other cases, you may have numeric data but your algorithm can only handle 
categorical or nominal attributes. A good example is where the label variable 
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being numeric (such as the market price of a home in the Boston Housing 
example set discussed in Chapter 6 on regression) and you want to use logis-
tic regression to predict if the price will be higher or lower than a certain 
threshold. Here we want to convert a numeric attribute into a binomial one.

In either of these cases, we may need to transform underlying data types into 
some other types. This activity is a very common data preparation step. The 
four most common data type conversion operators are the following:

	 n	� Numerical to Binominal: The Numerical to Binominal operator changes 
the type of numeric attributes to a binary type. Binominal attributes 
can have only two possible values: true or false. If the value of an 
attribute is between a specified minimal and maximal value, it becomes 
false; otherwise it is true. In the case of the market price example, our 
threshold market price is $30,000. Then all prices from $0 to $30,000 
will be mapped to false and any price above $30,000 is mapped to true.

	 n	� Nominal to Binominal: Here if a nominal attribute with the name 
“Outlook” and possible nominal values “sunny,” “overcast,” and 
“rain’“is transformed, the result is a set of three binominal attributes, 
“Outlook = sunny,” “Outlook = overcast,” and “Outlook = rain” whose 
possible values can be true or false. Examples (or rows) of the original 
data set where the Outlook attribute had values equal to sunny, will, in 
the transformed example set, have the value of the attribute Outlook 
= sunny set to true, while the value of the Outlook = overcast and 
Outlook = rain attributes will be false.

	 n	� Nominal to Numerical: This works exactly like the Nominal to Binominal 
operator if you use the “Dummy coding” option, except that instead 
of true/false values, we will see 0/1 (binary values). If you use “unique 
integers” option, each of the nominal values will get assigned a unique 
integer from 0 and up. For example, if Outlook was sunny, then  
“sunny” gets replaced by the value 1, “rain” may get replaced by 2, and 
“overcast” may get replaced by 0.

	 n	� Numerical to Polynominal: Finally, this operator simply changes 
the type (and internal representation) of selected attributes, i.e., every 
new numeric value is considered to be another possible value for the 
polynominal attribute. In the golf example, the Temperature attribute 
has 12 unique values ranging from 64 to 85. Each value is considered a 
unique nominal value. As numeric attributes can have a huge number 
of different values even in a small range, converting such a numeric 
attribute to polynominal form will generate a huge number of possible 
values for the new attribute. A more sophisticated transformation 
method uses the discretization operator, which is discussed next.

	 n	� Discretization: When converting numeric attributes to polynominal, it 
is best to specify how to set up the discretization to avoid the previously 
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mentioned problem of generating a huge number of possible values—
you do not want each numeric value to appear as an unique nominal 
one, but rather have them binned into some intervals. We can discretize 
the Temperature in the golf example by several methods: we can 
discretize using equal-sized bins with the Discretize by Binning operator. 
If we select two bins (default) we will have two equal ranges: [below 
74.5] and [above 74.5], where 74.5 is the average value of 64 and 85. 
Based on the actual Temperature value, the example will be assigned 
into one of the two bins. We can instead specify the number of rows 
falling into each bin (Discretize by Size operator) rather than equal bin 
ranges. We can also discretize by bins of equal number of occurrences 
by choosing to Discretize by Frequency, for example. Probably the most 
useful option is to Discretize by User Specification. Here we can explicitly 
provide ranges for breaking down a continuous numeric attribute into 
several distinct categories or nominal values using the table shown in 
Figure 13.12a. The output of the operator performing that discretization 
is shown in Figure 13.12b.

Sometimes we may need to transform the structure of an example set or “rotate 
it” about one of the attributes, a process commonly known as “pivoting” or 
creating pivot tables. Here is a simple example of why we would need to do this 
operation. The table consists of three attributes: a customer ID, a product ID 
and a numeric measure called Consumer Price Index (CPI) (see Figure 13.13a). 
We see that this simple example has 10 unique customers and 2 unique prod-
uct IDs. What we would like to do is to rearrange the data set so that we have 
two columns corresponding to the two product IDs and aggregate4 or group 
the CPI data by customer IDs. This is because we would like to analyze data on 
the customer level, which means that each row has to represent one customer 
and all customer features have to be encoded as attribute values.

This is accomplished simply with the Pivot operator. We select “customer id” 
as the group attribute and “product id” as the index attribute as shown in  
Figure 13.13b. If you are familiar with Microsoft Excel’s pivot tables, the group 
attribute parameter is similar to “row label” and the index attribute is akin to 
“column label.” The result of the pivot operation is shown in Figure 13.13c.

A converse of the Pivot operator is the De-pivot operator, which reverses the 
process described above and may sometimes also be required during our data 
preparation steps. In general a De-pivot operator converts a pivot table into a 
relational structure.

4CAUTION: The Pivot operator does not aggregate! If the source data set contains combinations of 
product ID and customer ID occurring multiple times, you would have to aggregate before applying the 
Pivot operator in order to produce a data set containing only unique combinations first.



FIGURE 13.12a
Discretize operator.
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FIGURE 13.12b
The output of the operation.

FIGURE 13.13a
A simple data set to explain the pivot operation using RapidMiner.
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In addition to these operators, you may also need to use the Append operator  
to add examples to an existing data set. Appending an example set with new 
rows (examples) works as the name sounds—you end up attaching the new 
rows to the end of the example set. You have to make sure that the examples 
match the attributes exactly with the main data set. Also useful is the classic 
Join operator, which combines two example sets with the same observations 
units but different attributes. The Join operator offers the traditional inner, 
outer, and left and right join options. An explanation for joins is available in 

FIGURE 13.13b
Configuring the Pivot operator.

FIGURE 13.13c
Results of the pivot operation.
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any of the books that deal with SQL programming as well as the RapidMiner 
help, which also provides example processes. We will not repeat them here.

Some of other common operators we have used in the various chapters of the 
book (and are explained there in context) are:

	 n	� Rename attributes
	 n	� Select attributes
	 n	� Filter examples
	 n	� Add attributes
	 n	� Attribute weighting

13.5 � SAMPLING AND MISSING VALUE TOOLS
Data sampling might seem out of place in today’s big data–charged environ-
ments. Why bother to sample when we can collect and analyze all the data we 
can? Sampling is a perhaps a vestige of the statistical era when data was costly 
to acquire and computational effort was costlier still. However there are many 
situations today with almost limitless computing capability, where “targeted” 
sampling is of use. A typical scenario is when building models on data where 
some class representations are very, very low. Consider the case of fraud pre-
diction. Depending upon the industry, fraudulent examples range from less 
than 1% of all the data collected to about 2 to 3%. When we build classifica-
tion models using such data, our models tend to be biased and would not be 
able to detect fraud in a majority of the cases with new unseen data, literally 
because they have not “learned” well enough!

Such situations call for “balancing” data sets where we need to sample our 
training data and increase the proportion of the minority class so that our 
models can be trained better. The plot in Figure 13.14 shows an example of 
imbalanced data: the “positive” class indicated by a circle is disproportionately 
higher than the “negative” class indicated by a cross.

Let us explore this using a simple example. The data set shown in the process 
in Figure 13.15 is available in RapidMiner’s Samples repository and is called 
“Weighting.” This is a balanced data set consisting of about 500 examples with 
the label variable consisting of roughly 50% “positive” and 50% “negative” 
classes. Thus it is a balanced data set. When we train a decision tree to classify 
this data, we get an overall accuracy of 84%. The main thing to note here is 
that the decision tree recall on both the classes is roughly the same: ∼86% as 
seen in Figure 13.15.

We now introduce a subprocess called “Unbalance,” which will resample the 
original data to introduce a skew: the resulting data set has more “positive” class 
examples than “negative” class examples. Specifically, we now have a data set 
with 92% belonging to the positive class (92% class recall) and 8% belonging 
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FIGURE 13.14
Snapshot of an imbalanced data set

FIGURE 13.15
Performance of decision trees on well-balanced data.
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to negative class (8% class recall). The process and the results are shown in  
Figure 13.16. So how do we address this data imbalance?

There are several ways to fix this situation. The most commonly used 
method is to resample the data to restore the balance. This involves under-
sampling the more frequent class—in our case, the “positive” class—and 
oversampling the less frequent “negative” class. The “rebalance” subprocess 
achieves this in our final RapidMiner process. As seen in Figure 13.17, the 
overall accuracy is now back to the level of the original balanced data. The 
decision tree also looks a little bit similar to the original, whereas for the 
unbalanced dataset it was reduced to a stub. An additional check to ensure 
that accuracy is not compromised by unbalanced data is to replace the accu-
racy by what is called “balanced accuracy.” It is defined as the arithmetic 
mean of the class recall accuracies, which represent the accuracy obtained 
on positive and negative examples, respectively. If the decision tree per-
forms equally well on either class, this term reduces to the standard accu-
racy (i.e., the number of correct predictions divided by the total number of 
predictions).

FIGURE 13.16
Unbalanced data and the resulting accuracy.
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There are several built-in RapidMiner processes to perform sampling: Sample, 
Sample (Bootstrapping), Sample (stratified), Sample (Model-Based), and Sam-
ple (Kennard-Stone). Specific details about these techniques are well described 
in the software help. We want to only remark on the Bootstrapping method 
here because it is a very common sampling technique. Bootstrapping works 
by sampling repeatedly within a base data set with replacement. So when you 
use this operator to generate new samples, you may see repeated or nonunique 
examples. You have the option of specifying an absolute sample size or a rela-
tive sample size and RapidMiner will randomly pick examples from your base 
data set with replacement to build a new bootstrapped example set.

We will close this section with a brief description of missing value handling 
options available in RapidMiner. The basic operator is called Replace Miss-
ing Values. This operator provides several alternative ways to replace missing  
values: minimum, maximum, average, zero, none, and a user-specified value. 
There is no median value option. Basically, all missing values in a given col-
umn (attribute) are replaced by whatever option is chosen. A better way to 
treat missing values is to use the Impute Missing Values operator. This opera-
tor changes the attribute with missing values to a label or target variable, and 

FIGURE 13.17
Rebalanced data and resulting improvement in class recall.
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trains models to determine the relationship between this label variable and 
other attributes so that it may then be predicted.

13.6 � OPTIMIZATION TOOLS5

Recall that in Chapter 5 on decision trees, we were presented with an oppor-
tunity to specify parameters to build a decision tree for the credit risk example 
(Section 4.1.2, step 3) but simply chose to use default values. Similar situa-
tions arose when building a support vector machine model (Section 4.6.3) or 
logistic regression model (Section 5.2.3), where also we chose to simply use 
the default model parameter values. When we run a model evaluation, the 
performance of the model is usually an indicator as to whether we chose the 
right parameter combinations for our model.6 But what if we are not happy 
with the model accuracy (or its r-squared value)? Can we improve it? How?

RapidMiner provides several unique operators that will allow us to discover 
and choose the best combination of parameters for pretty much all of the avail-
able operators that need parameter specifications. The fundamental principle 
on which this works is the concept of a “nested” operator. We first encountered 
a nested operator in Section 4.1.2, step 2—the Split Validation operator. We 
also described another nested operator in Section 12.5 in the discussion on 
wrapper-style feature selection methods. The basic idea is to iteratively change 
the parameters for a learner until some stated performance criteria are met. 
The Optimize operator performs two tasks: determine what values to set for 
the selected parameters for each iteration, and determine when to stop the 
iterations. RapidMiner provides three basic methods to set parameter values: 
grid search, greedy search, and an evolutionary search (also known as genetic) 
method. We will not go deep into the workings of each method, but only do a 
high-level comparison between them and mention when each approach would 
be applicable.

To demonstrate the working of an optimization process, we will consider 
a very simple model: a polynomial function (Figure 13.18). Specifically, 
we have a function y = f(x) = x6 + x3 – 7x2 – 3x +1 and we wish to find 
the minimum value of y within a given domain of x. This is of course the 
simplest form of optimization—we want to select an interval of values for 
x where y is minimum. As seen in the functional plot, we see that for x in 

5Readers may skip this section if completely new to RapidMiner, and return to it after developing some 
familiarity with the tool and data mining in general.
6Normally you can’t judge from just one performance estimate whether you chose the right parameters. 
You’d have to see multiple performance values and their dependency on the parameter values to infer 
that you chose the right/optimal parameter values.
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[–1.5, 2], we have two minima: a local minimum of y = –4.33 @ x = –1.3  
and a global minimum of y = –7.96 @ x = 1.18. We will show how to use 
RapidMiner to search for these minima using the Optimize operators. As 
mentioned before, the optimization happens in a nested operator, so we 
will describe what is placed inside the optimizer first before discussing the 
optimizer itself.

The nested process itself, also called the inner process, is very simple as seen 
in Figure 13.19a: Generate Data randomly generates values for “x” between an 
“upper bound” and a “lower bound” (see Figure 13.19b).

Generate Attributes will calculate “y” for each value of “x” in this interval. Per-
formance (Extract Performance) will store the minimum value of “y” within 
each interval. This operator has to be configured as shown on the right of  
Figure 13.19a in order to ensure that the correct performance is optimized. In 
this case, we select “y” as the attribute that has to be minimized. The Rename, 
Select Attributes, and Log operators are plugged in to keep the process focused 
on only two variables and to track the progress of optimization.

This nested process can be inserted into any of the available Optimize Param-
eters operators. Let us describe how we do this with the Optimize Parameters 
(Grid) operator first. In this exercise, we are basically optimizing the interval 
[lower bound, upper bound] so that we achieve the objective of minimizing the 
function y = f(x). As we saw in the function plot, we wish to traverse the entire 
domain of “x” in small enough interval sizes so that we can catch the exact 
point at which “y” hits a global minimum.

FIGURE 13.18
A simple polynomial function to demonstrate optimization.



FIGURE 13.19a
The inner process that is nested inside an optimization loop.
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FIGURE 13.19b
Configuration of the generated data.

The grid search optimizer simply moves this interval window across the entire 
domain and stops the iterations after all the intervals are explored (Figure 
13.20). Clearly it is an exhaustive but inefficient search method. To set this 
process up, we simply insert the inner process inside the outer Optimize Param-
eters (Grid) operator and select the attributes upper bound and attributes lower 
bound parameters from the Generate Data operator. To do this, we click on the 
Edit Parameter Settings option for the optimizer, select Generate Data under the 
Operators tab of the dialog box, and further select attributes_upper_bound and 
attributes_lower_bound under the Parameters tab (Figure 13.21).

We will need to provide ranges for the grid search for each of these parameters. 
In this case we set the lower bound to go from –1.5 to –1 and the upper bound 
to go from 0 to 1.5 in steps of 10. So the first interval (or window) will be x = 
[–1.5, 0], the second one will be [–1.45, 0] and so on until the last window, 
which will be [–1, 1.5] for a total of 121 iterations. The Optimize Performance 
(Grid) search will evaluate “y” for each of these windows, and store the mini-
mum “y” in each iteration. The iterations will only stop after all 121 intervals 
are evaluated, but the final output will indicate the window that resulted in the 
smallest minimum “y.” The plot in Figure 13.22 shows the progress of the iter-
ations. Each point in the chart corresponds to the lowest value of y evaluated 
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by the expression within a given interval. We find the local minimum of  
y = –4.33 @ x = –1.3 at the very first iteration. This corresponds to the window 
[–1.5, 0]. If the grid had not spanned the entire domain [−1.5, 1.5], the opti-
mizer would have reported the local minimum as the best performance. This is 
one of the main disadvantages of a grid search method.

FIGURE 13.21
Configuring the grid search optimizer.

FIGURE 13.20
Searching for an optimum within a fixed window that slides across.



FIGURE 13.22
Progression of the grid search optimization.
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The other disadvantage is the number of redundant iterations. Looking at the 
plot above, we see that the global minimum was reached by about the 90th 
iteration. In fact for iteration 90, yminimum = –7.962, whereas the final reported 
lowest yminimum was –7.969 (iteration 113), which is only about 0.09% better. 
Depending upon our tolerances, we could have terminated the computations 
earlier. But a grid search does not allow early terminations and we end up with 
nearly 30 extra iterations. Clearly as the number of optimization parameters 
increase, this ends up being a significant cost.

We next apply the Optimize Parameters (Quadratic) operator to our inner pro-
cess. Quadratic search is based on a “greedy” search methodology. A greedy 
methodology is an optimization algorithm that makes a locally optimal deci-
sion at each step (Ahuja, 2000; Bahmani, 2013). While the decision may be 
locally optimal at the current step, it may not necessarily be the best for all 
future steps. k-nearest neighbor is one good example of a greedy algorithm. In 
theory, greedy algorithms will only yield local optima, but in special cases, they 
can also find globally optimal solutions. Greedy algorithms are best suited 
to find approximate solutions to difficult problems. This is because they are 
less computationally intense and tend to operate over a large data set quickly. 
Greedy algorithms are by nature typically biased toward coverage of large num-
ber of cases or a quick payback in the objective function.

In our case, the performance of the quadratic optimizer is marginally worse 
than a grid search requiring about 100 shots to hit the global minimum (com-
pared to 90 for a grid), as seen in Figure 13.23. It also seems to suffer from 
some of the same problems we encountered in grid search.

We will finally employ the last available option: Optimize Parameters (Evolu-
tionary). Evolutionary (or genetic) algorithms are often more appropriate than 
a grid search or a greedy search and lead to better results, This is because they 
cover a wider variety of the search space through mutation and can iterate onto 
good minima through cross-over of successful models based upon the success 
criteria. As we can see in the progress of iterations in Figure 13.24, we hit the 
global optimum without getting stuck initially at a local minimum—you can 
see that right from the first few iterations we have approached the neighbor-
hood of the lowest point. The evolutionary method is particularly useful if we 
do not initially know the domain of the functions, unlike in this case where 
we did know. We see that it takes far fewer steps to get to the global minimum 
with a high degree of confidence—about 18 iterations as opposed to 90 or 
100. Key concepts to understanding this algorithm are mutation and cross-over, 
both of which are possible to control using the RapidMiner GUI. More tech-
nical details of how the algorithm works are beyond the scope of this book 
and you can refer to some excellent resources listed at the end of this chapter  
(Weise, 2009).



FIGURE 13.23
Progression of the quadratic greedy search optimization.



FIGURE 13.24
Progression of the genetic search optimization.
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To summarize, there are three optimization algorithms available in Rapid-
Miner all of which are nested operators. The best application of optimization 
is for the selection of modeling parameters, for example, split size, leaf size, 
or splitting criteria in a decision tree model. We build our machine learning 
process as usual and insert this process or “nest” it inside of the optimizer. 
By using the Edit Parameter Settings … control button, we can select the 
parameters of any of the inner process operators (for example a Decision Tree 
or W-Logistic or SVM) and define ranges to sweep. Grid search is an exhaus-
tive search process for finding the right settings, but is expensive and cannot 
guarantee a global optimum. Evolutionary algorithms are very flexible and 
fast and are usually the best choice for optimizing machine learning models 
in RapidMiner.

CONCLUSION
As with other chapters in this book, the RapidMiner process explained and 
developed in this discussion can be accessed from the companion site of the 
book at www.LearnPredictiveAnalytics.com. The RapidMiner process (*.rmp 
files) can be downloaded to the computer and can be imported to RapidMiner 
from File > Import Process. The data files can be imported from File > Import 
Data.

This chapter provided a 30,000-foot view of the main tools that one would 
need to become familiar with in building predictive analytics models using 
RapidMiner. We started out by introducing the basic graphical user interface 
for the program. We then discussed options by which data can be brought 
into and exported out of RapidMiner. We provided an overview of the data 
visualization methods that are available within the tool, because quite nat-
urally, the next step of any data mining process after ingesting the data is to 
understand in a descriptive sense the nature of the data. We then introduced 
tools that would allow us to transform and reshape the data by changing the 
type of the incoming data and restructuring them in different tabular forms 
to make subsequent analysis easier. We also introduced tools that would 
allow us to resample available data and account for any missing values. Once 
you are familiar with these essential data preparation options, you are in a 
position to apply any of the appropriate algorithms described in the earlier 
chapters for analysis. Finally, in Section 13.6 we introduced optimization 
operators that allow us to fine-tune our machine learning algorithms so that 
we can develop an optimized and good quality model to extract the insights 
we are looking for.

With this high-level overview, one can go back to any of the earlier chapters 
to learn about a specific technique and understand how to use RapidMiner to 
build models using that machine learning algorithm.

http://www.learnpredictiveanalytics.com/
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Comparison of Data Mining Algorithms



Algorithm Description Model Input Output Pros Cons Use Cases

Decision 
Trees

Partitions 
the data into 
smaller subsets 
where each 
subset contains 
(mostly) 
responses of 
one class (either 
“yes” or “no”)

A set of 
rules to 
partition 
a data set 
based on 
the values 
of the 
different 
predictors.

No 
restrictions 
on variable 
type for 
predictors.

The label 
cannot be 
numeric. 
It must be 
categorical.

Intuitive to 
explain to 
nontechni-
cal busi-
ness users. 
Normalizing 
predictors is 
not neces-
sary.

Tends to over-
fit the data. 
Small changes 
in input data 
can yield 
substantially 
different trees. 
Selecting the 
right param-
eters can be 
challenging.

Marketing 
segmentation, 
fraud detec-
tion.

Rule 
Induction

Models the 
relationship 
between input 
and output by 
deducing simple 
IF/THEN rules 
from a data set.

A set of 
organized 
rules that 
contain an 
antecedent 
(inputs) 
and con-
sequent 
(output 
class).

No 
restrictions. 
Accepts 
categorical, 
numeric, 
and binary 
inputs.

Prediction 
of target 
variable, 
which is 
categorical.

Model can 
be easily 
explained 
to business 
users.
Easy to 
deploy in 
almost any 
tools and 
applications.

Divides the 
data set in 
rectilinear 
fashion.

Manufactur-
ing, applica-
tions where 
description 
of model is 
necessary.

k-Nearest 
Neighbors

A lazy learner 
where no model 
is general-
ized. Any new 
unknown data 
point is com-
pared against 
similar known 
data point in the 
training set.

Entire 
training 
data set is 
the model.

No 
restrictions. 
However, 
the distance 
calculations 
work 
better with 
numeric 
data. Data 
need to be 
normal-
ized.

Prediction 
of target 
variable, 
which is 
categorical.

Requires 
very little 
time to build 
the model. 
Handles 
missing attri-
butes in the 
unknown 
record grace-
fully. Works 
with nonlin-
ear relation-
ships.

The deploy-
ment runtime 
and storage 
requirements 
will be expen-
sive.
Arbitrary 
selection of 
value of k.
No descrip-
tion of the 
model.

Image 
processing, 
applications 
where slower 
response time 
is acceptable.

Classification: Predicting a Categorical Target Variable



Naïve 
Bayesian

Predicts the 
output class 
based on Bayes’ 
theorem by 
calculating class 
conditional 
probability and 
prior probability.

A lookup 
table of 
probabil-
ities and 
condi-
tional 
probabil-
ities for 
each attri-
bute with 
an output 
class.

No restric-
tions. How-
ever, the 
probability 
calcula-
tion works 
better with 
categorical 
attributes

Prediction 
of proba-
bility for all 
class values, 
along with 
the winning 
class.

Time 
required to 
model and 
deploy is 
minimum.
Great algo-
rithm for 
benchmark-
ing. Strong 
statistical 
foundation.

Training data 
set needs to 
be represen-
tative sample 
of population 
and needs to 
have complete 
combinations 
of input and 
output. Attri-
butes need to 
be indepen-
dent.

Spam detec-
tions, text 
mining.

Artificial 
Neural 
Networks

A computational 
and mathe-
matical model 
inspired by the 
biological ner-
vous system. The 
weights in the 
network learn to 
reduce the error 
between actual 
and prediction.

A network 
topology 
of lay-
ers and 
weights 
to process 
input data.

All attri-
butes 
should be 
numeric.

Prediction 
of target 
(label) vari-
able, which 
is categori-
cal.

Good at 
modeling 
nonlinear 
relation-
ships. Fast 
response 
time in 
deployment.

No easy way 
to explain the 
inner working 
of the model.
Requires 
preprocessing 
data. Cannot 
handle miss-
ing attributes.

Image rec-
ognition, 
fraud detec-
tion, quick 
response time 
applications.

Continued



Support 
Vector 
Machines

Essentially a 
boundary detec-
tion algorithm 
that identifies/
defines multi-
dimensional 
boundaries 
separating data 
points belong-
ing to different 
classes.

The model 
is a vector 
equation 
that allows 
us to clas-
sify new 
data points 
into differ-
ent regions 
(classes).

All attri-
butes 
should be 
numeric.

Prediction 
of target 
(label) vari-
able, which 
can be cat-
egorical or 
numeric.

Very robust 
against over-
fitting. Small 
changes to 
input data 
do not affect 
boundary 
and thus  
do not  
yield  
different 
results. 
Good at 
handling 
nonlinear 
relationships.

Computa-
tional perfor-
mance during 
training phase 
can be slow. 
This may be 
compounded 
by the effort 
needed to 
optimize 
parameter 
combinations.

Optical char-
acter recog-
nition, fraud 
detection, 
modeling 
“black-swan” 
events.

Ensemble 
Models

Leverages 
wisdom of the 
crowd. Employs 
a number of 
independent 
models to make 
a prediction and 
aggregates the 
final prediction.

A meta-
model 
with 
individual 
base mod-
els and a 
aggregator.

Superset of 
restrictions 
from the 
base model 
used.

Prediction 
for all class 
values with 
a winning 
class.

Reduces 
the gener-
alization 
error.Takes 
different 
search space 
into consid-
eration

Achieving 
model inde-
pendence is 
tricky.
Difficult to 
explain the 
inner working 
of the model.

Most of the 
practical 
classifiers are 
ensemble.

Algorithm Description Model Input Output Pros Cons Use Cases

Classification: Predicting a Categorical Target Variable Continued



Regression: Predicting a Numeric Target Variable

Algorithm Description Model Input Output Pros Cons Use Case

Linear 
Regression

The classical 
predictive 
model that 
expresses the 
relationship 
between 
inputs and 
an output 
parameter in 
the form of 
an equation.

The model 
consists of 
coefficients 
for each 
input predic-
tor and their 
statistical 
significance. 
A bias (inter-
cept) may be 
optional.

All attri-
butes 
should be 
numeric.

The label 
may be 
numeric 
or binom-
inal.

The 
workhorse 
of most 
predictive 
modeling 
techniques. 
Easy to use 
and explain 
to non-
technical 
business 
users.

Cannot 
handle miss-
ing data. 
Categorical 
data are 
not directly 
usable, but 
require 
transforma-
tion into 
numeric.

Pretty much 
any scenario 
that requires 
predicting a 
continuous 
numeric 
value.

Logistic 
Regression

Technically, 
this is a 
classification 
method. But 
structurally 
it is similar 
to linear 
regression.

The model 
consists 
of coeffi-
cients for 
each input 
predictor 
that relate to 
the “logit.” 
Transform-
ing the logit 
into prob-
abilities of 
occurrence 
(of each 
class) com-
pletes the 
model.

All attri-
butes 
should be 
numeric.

The label 
may only 
be binom-
inal.

One of the 
most com-
mon clas-
sification 
methods. 
Compu-
tationally 
efficient.

Cannot han-
dle missing 
data. Not 
very intui-
tive when 
dealing 
with a large 
number of 
predictors.

Marketing 
scenarios 
(e.g., will 
click or not 
click), any 
general two-
class prob-
lem.



Association Analysis: Unsupervised Process for Finding Relationships between Items

Algorithm Description Model Input Output Pros Cons Use Case

FP 
Growth 
and 
Apriori

Measures the 
strength of 
co-occurrence 
between one 
item with 
another.

Finds 
simple, 
easy to 
understand 
rules like 
{Milk, 
Diaper} -> 
{Beer}

Trans-
actions 
format with 
items in the 
columns 
and 
transactions 
in the rows.

List of 
relevant 
rules 
developed 
from the 
data set

Unsupervised 
approach 
with minimal 
user inputs. 
Easy to 
understand 
rules.

Requires 
prepro-
cessing if 
input is of 
different 
format.

Recom-
mendation 
engines, 
cross-selling, 
and content 
suggestions.



Clustering: An Unsupervised Process for Finding Meaningful Groups in Data

Algorithm Description Model Input Output Pros Cons Use case

k-means Data set is 
divided into k 
clusters by find-
ing k centroids.

Algorithm 
find k cen-
triods and 
all the data 
points are 
assigned to 
the nearest 
centriods, 
which form 
a cluster.

No restric-
tions. 
However, 
the distance 
calculations 
work better 
with numeric 
data. Data 
should be 
normalized.

Data set is 
appended by 
One of k clus-
ter labels.

Simple to 
implement. 
Can be used 
for dimen-
sion reduc-
tion.

Specifica-
tion of k 
is arbitrary 
and may not 
find natu-
ral clusters. 
Sensitive to 
outliers.

Customer 
segmenta-
tion, anom-
aly detection, 
applications 
where globu-
lar clustering 
is natural.

DBSCAN Identifies 
clusters as a 
high-density 
area sur-
rounded by 
low-density 
areas.

List of 
clusters and 
assigned 
data points. 
Default Clus-
ter 0 con-
tains noise 
points.

No restric-
tions. 
However, 
the distance 
calculations 
work better 
with numeric 
data. Data 
should be 
normalized.

Cluster labels 
based on 
identified 
clusters.

Finds the 
natural 
clusters of 
any shape. 
No need to 
mention 
number of 
clusters.

Specification 
of density 
parameters. 
A bridge 
between two 
clusters can 
merge the 
cluster. Can 
not cluster 
varying den-
sity data set.

Applica-
tions where 
clusters are 
nonglobu-
lar shapes 
and when 
the prior 
number 
of natural 
groupings is 
not known.

Self- 
Organiz-
ing Maps

A visual cluster-
ing technique 
with roots from 
neural networks 
and prototype 
clustering.

A two- 
dimensional 
lattice where 
similar data 
points are 
arranged 
next to each 
other.

No restric-
tions. 
However, 
the distance 
calculations 
work better 
with numeric 
data. Data 
should be 
normalized.

No explicit 
clusters iden-
tified. Similar 
data points 
occupy either 
the same cell 
or are placed 
next to each 
other in the 
neighbor-
hood.

A visual way 
to explain 
the clusters. 
Reduces 
multidi-
mensional 
data to two 
dimensions.

Number of 
centriods 
(topology) 
is specified 
by the user. 
Does not 
find natural 
clusters in 
the data.

Diverse 
applications 
including 
visual data 
exploration, 
content sug-
gestions, and 
dimension 
reduction.



Anomaly Detection: Supervised and Unsupervised Techniques to Find Outliers in the Data

Algorithm Description Model Input Output Pros Cons Use Case

Distance 
Based

Outlier iden-
tified based 
on distance 
if kth nearest 
neighbor.

All data 
points are 
assigned 
a distance 
score based 
on nearest 
neighbor.

Accepts both 
numeric and 
categorical 
attributes. 
Normal-
ization is 
required 
since 
distance is 
calculated.

Every data 
point has 
a distance 
score. The 
higher the 
distance, the 
more likely 
the data 
point is an 
outlier.

Easy to 
implement. 
Works 
well with 
numeric 
attributes.

Specifica-
tion of k is 
arbitrary.

Fraud 
detection, 
pre-
processing 
technique.

Density 
Based

Outlier is 
identified 
based on 
data points in 
low-density 
regions.

All data 
points as 
assigned 
a density 
score based 
on the 
neighbor-
hood.

Accepts both 
numeric and 
categorical 
attributes. 
Normal-
ization is 
required 
since density 
is calculated.

Every data 
point has 
a density 
score. The 
lower the 
density, the 
more likely 
the data 
point is an 
outlier.

Easy to 
implement. 
Works 
well with 
numeric 
attributes.

Specifi-
cation of 
distance 
param-
eter by 
the user. 
Inability 
to identify 
varying 
density 
regions.

Fraud detec-
tion, pre-
processing 
technique.

Local 
outlier 
factor

Outlier is 
identified 
based on 
calculation 
of relative 
density in 
the neighbor-
hood.

All data 
points as 
assigned a 
relative den-
sity score 
based on 
the neigh-
borhood.

Accepts both 
numeric and 
categorical 
attributes. 
Normal-
ization is 
required 
since density 
is calculated.

Every data 
point has 
a density 
score. The 
lower the 
relative 
density, the 
more likely 
the data 
point is an 
outlier

Can handle 
the varying 
density 
scenario.

Specifi-
cation of 
distance 
parameter 
by the 
user.

Fraud detec-
tion, pre-
processing 
technique.



Feature Selection: Selection of Most Important Attributes

Algorithm Description Model Input Output Pros Cons Use Case

PCA 
(Filter 
Based)

PCA is in 
reality a 
dimension 
reduction 
method. It 
combines the 
most import-
ant attributes 
into a fewer 
number of 
transformed 
attributes.

N/A Numeri-
cal attri-
butes

Numerical 
attributes 
(reduced 
set). Does 
not really 
require a 
label.

Efficient way to 
extract predic-
tors that are 
uncorrelated 
to each other. 
Helps to apply 
Pareto princi-
ple in identify-
ing attributes 
with highest 
variance.

Very sensitive 
to scaling 
effects, i.e., 
requires nor-
malization of 
attribute values 
before applica-
tion. Focus on 
variance some-
times results in 
selecting noisy 
attributes.

Most 
numeric- 
valued 
data 
sets that 
require 
dimension 
reduction.

Info 
Gain 
(Filter 
Based)

Selecting 
attributes 
based on 
relevance to 
the target or 
label.

Similar 
to deci-
sion tree 
model.

No 
restric-
tions on 
variable 
type for 
predic-
tors.

Data sets 
require a 
label. Can 
only be 
applied on 
data sets 
with nomi-
nal label.

Same as deci-
sion trees.

Same as deci-
sion trees.

Applica-
tions for 
feature 
selection 
where 
target 
variable is 
categorical 
or numeric.

Chi-
Square 
(Filter 
Based)

Selecting 
attributes 
based on 
relevance to 
the target or 
label.

Uses the 
chi-square 
test of 
indepen-
dence 
to relate 
predictors 
to label.

Categori-
cal (poly-
nominal) 
attributes

Data sets 
require a 
label. Can 
only be 
applied 
on data 
sets with 
a nominal 
label.

Very robust. A 
fast and effi-
cient scheme 
to identify 
which categor-
ical variables 
to select for 
a predictive 
model.

Sometimes 
difficult to 
interpret.

Applica-
tions for 
feature 
selection 
where all 
variables 
are cate-
gorical.

Continued



Algorithm Description Model Input Output Pros Cons Use Case

Forward 
Selec-
tion 
(Wrap-
per 
Based)

Selecting 
attributes 
based on 
relevance to 
the target or 
label.

Works in 
conjunc-
tion with 
modeling 
methods 
such as 
regression.

All 
attributes 
should 
be 
numeric.

The label 
may be 
numeric or 
binominal

Multicol-
linearity 
problems can 
be avoided. 
Speeds up the 
training phase 
of the model-
ing process

Once a vari-
able is added 
to the set, it is 
never removed 
in subsequent 
iterations even 
if its influence 
on the target 
diminishes.

Data 
sets with 
a large 
number 
of input 
variables 
where 
feature 
selection is 
required.

Back-
ward 
Elimi-
nation 
(Wrap-
per 
Based)

Selecting 
attributes 
based on 
relevance to 
the target or 
label.

Works in 
conjunc-
tion with 
modeling 
methods 
such as 
regression.

All 
attributes 
should 
be 
numeric.

The label 
may be 
numeric or 
binominal.

Multicol-
linearity 
problems can 
be avoided. 
Speeds up the 
training phase 
of the model-
ing process.

Need to begin 
with a full 
model, which 
can sometimes 
be compu-
tationally 
intensive.

Data sets 
with few 
input 
variables 
where 
feature 
selection is 
required.

Feature Selection: Selection of Most Important Attributes Continued
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A
AdaBoost model, 158–159, 159f
ANNs. See Artificial neural networks 

(ANNs)
Anomaly detection

causes
click fraud detection, 331b
credit card transaction fraud 

monitoring, 331
data errors, 330
distributional assumption, 330
distribution classes, 330
normal data variance, 330

characteristics, 332–333
classification technique, 334
clustering, 334
computer network traffic, 329
density based outlier, 333, 339, 

339f–341f
distance based outlier, 333, 333f

data preparation, 336–337, 337f
Detect Outlier (Distances) 

operator, 337
distance score, 334–335
Euclidean distance, 334
Iris data set, 335, 336f
k-NN classification technique, 

334–335
Outlier detection output, 338, 

338f
two-dimensional scatterplot, 

334, 335f
unsupervised outlier detection 

operator, 336
distribution based outlier, 

333–334
distribution model, 332
generalized classification model, 

344

high-volume transaction networks, 
344

LOF technique
minimal points, 342
output, 342–344, 343f
RapidMiner process, 342, 343f
relative density, 341–342

outlier, 329
sorting function, 332
statistical methods

Mahalanobis distance, 332
standard normal distribution, 

332, 333f
stratified sampling method, 

344–345
supervised and unsupervised 

techniques, 414
Anscombe’s quartet, 45–46, 46f
Apriori algorithm, 202–206, 

202f–203f
clickstream data set, 204, 204t
frequent item set support 

calculation, 204, 205t
rule generation, 206
support, 204, 205f

Area under the curve (AUC), 263, 
270, 272f

Artificial intelligence, 4–5
Artificial neural networks (ANNs), 

13, 18, 126f
activation function, 126–127
advantages, 134
aggregation function, 124–125
AutoMLP, 130–131
back propagation, 127
biological neurons, 125f, 125b
data preparation, 131
error calculation, 128–129, 128f
evaluation, 130f, 132
hidden layers, 126

linear mathematical model, 124
missing values, 133
modeling operator and parameters, 

131–132
model topology, 124, 124f
optical character recognition, 

127b
perceptron, 124–125
performance vector, 132, 133f
simple aggregation activation 

function, 128
transfer function, 124–125
universal approximator, 126–127
weight adjustment, 129–130, 

129f
Association analysis

antecedent and consequent, 196
Apriori algorithm, 202–206, 

202f–203f
clickstream data set, 204, 204t
frequent item set support 

calculation, 204, 205t
rule generation, 206
support, 204, 205f

association rules, 197
confidence, 198–199
conviction, 198, 200
cross selling, 196b
FP-Growth algorithm, 208

conditional FP-tree, 210, 210f
data preparation, 211–215, 211f
frequent paths, 207
modeling operator and 

parameters, 212–213, 212f
rules creation, 213
transactions 1, 2, and 3, 207, 

208f
transactions list, 207, 207t
trimmed FP-tree, 209–210,  

209f

Note: Page numbers followed by “b”, “f” and “t” indicate boxes, figures and tables respectively
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Association analysis (Continued)
lift, 198–200
market basket analysis, 195–196
rule generation process, 200–202, 

201f
support, 198–199

Automatic Multilayer Perceptron 
(AutoMLP), 130–131

B
Bagging model, 156–157, 157f
Bayesian Information Criterion 

(BIC), 232–234
Bayesian probabilistic theories, 4–5
Big Data, 7
Blog gender classification, 284

key features identification, 
296–297, 297f

LibSVM(linear) operators,  
297–299

preprocessing text data, 293, 295f
process documents, 293, 295f
Read Excel operator, 293, 294f
test data preparation, 299, 300f
training and testing predictive 

models, 297–299, 298f
unstructured data, 290t–292t, 

288–293
W-Logistic operators, 297–299
X-Validation operator, 297–299, 

298f, 299t
Bootstrap aggregating/bagging, 

154–155
Boston Housing data set, 170,  

171t–172t

C
Categorical data types, 40
Chi-square-based filtering

attribute weighting, 362, 363f
contingency table, 361–362, 362t
expected frequency table, 361–362, 

362t
observed vs. expected frequencies, 

362
Classification

ANNs. See Artificial neural 
networks (ANNs)

categorical target variable 
prediction, 408–410

classes, 63
decision trees. See Decision trees
ensemble learners. See Ensemble 

learners

K-nearest neighbors. See K-nearest 
neighbors (k-NN)

naïve bayesian. See Naïve bayesian
rule induction. See Rule induction
SVMs. See Support vector machines 

(SVMs)
Clustering, 286, 288f–289f

DBSCAN clustering, 240f.  
See Density-Based Spatial 
Clustering of Applications 
with Noise (DBSCAN) 
clustering

dimensionality reduction, 218
document clustering, 218
k-means clustering, 230f. See also 

k-means clustering.
object reduction, 219
SOM, 242–243, 242f. See also 

Self-organizing map (SOM)
types

customer records segmentation, 
222t, 222b

DBSCAN, 221
density clustering, 221
Euclidean distance 

measurement, 219
exclusive/strict partitioning 

clusters, 219
fuzzy/probabilistic clusters, 220
hierarchical clustering, 219, 221
model-based clustering, 221
overlapping clusters, 219
prototype-based clustering, 

220–221
SOM, 221

Confusion matrix, 189–190, 189f
Cross Industry Standard Process for 

Data Mining (CRISP-DM), 
17–18, 18f

D
Data discovery techniques, 5
Data exploration

data, definition, 37
data preparation, 38
data sets

categorical/nominal, 40–41
numeric/continuous, 40
types, 40–41
visual exploration, 39–40

data understanding, 38
data visualization, 37

Andrews curves, 57–59, 59f
box whisker plot, 48–49

bubble chart, 55, 55f
class-stratified histogram, 48, 49f
class-stratified quartile plot, 49, 

50f
cognitive thinking, 47
density charts, 55, 56f
deviation chart, 57, 58f
distribution chart, 47–49, 48f
histogram, 48, 48f
parallel chart, 56–57, 57f
quartile plot, 49, 50f
scatter matrix plot, 53–55, 54f
scatter multiple plot, 53, 53f
scatterplot, 52–53, 52f

descriptive statistics, 37
multivariate exploration. See 

Multivariate exploration
univariate exploration. See 

Univariate exploration
Data mining process, 19f

anomaly detection  
algorithm, 15

application
assimilation, 34
production readiness, 32–33
remodeling, 34
response time, 33
technical integration, 33

artificial neural network, 18
automated clustering, 18
classification model, 4–5, 10, 13
CRISP-DM, 17–18, 18f
data preparation

EDA, 23
feature selection, 26
missing values, 24
outliers, 25–26
pivot/transpose functions, 22–23
quality, 24
sampling, 26–27
transformation, 25
types and conversion, 25

descriptive/explanatory modeling, 
18–19

DMAIC, 17–18
modeling, 28f

abstract data representation, 27
classification, 27
decision tree techniques, 28
ensemble modeling, 31–32
model evaluation, 31, 31t
regression model, 30, 30f
simple linear regression 

technique, 28
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test data set, 28, 29f, 29t
training data set, 28, 29f, 29t

predictive modeling, 18–19
prior knowledge, 19

attribute, 22
causation vs. correlation, 22, 22t
data point/record/data object, 21
data set, 21, 21t
identifiers, 22
label, 22
objective, 20
subject area, 20–21

quantitative analysis, 35
RapidMiner software, 12. See also 

RapidMiner
SEMMA, 17–18
SOM, 14–15
types

anomaly/outlier detection, 9. 
See also Anomaly detection.

classification, 9. See also  
Classification

clustering, 9. See also  
Clustering

market basket analysis, 9. See 
also Association analysis

regression techniques, 9. See also 
Regression methods

supervised/unsupervised 
learning models, 8, 10

time series forecasting, 9. See 
also Time series forecasting

wrapper-type methods, 15–16
Data storage, 6
Data transformation tools

Append operator, 391–392
data type conversion operators, 

387
De-pivot operator, 388
dichotomization, 386
discretization output, 387–388, 

390f
discretize operator, 387–388, 389f
Join operator, 391–392
pivot tables, 388, 390f–391f

Davies-Bouldin index, 229
Decision trees, 13, 28

accuracy, 83
advantages, 87–88
aggregate measures, 86
baseline model performance 

measures, 85, 85f
credit default identification 

process, 85–86, 86f

credit scoring, 72
data preparation

attribute value replacement, 
76–77, 78f

data transformation, 77–79, 
80f

German credit data, 74–75, 75t
disadvantages, 88
entropy, 65, 65f

uncertainity reduction, 65b
gain ratio, 82–83
Gini index, 83

definition, 66
Golf data set, 66, 67t, 69–70, 70f

information gain, 68, 69t
split data, 66
subsets/branches, 69, 69f

information gain, 82, 88
Meta Cost, 85
minimal gain value, 83
minimal leaf size, 85
overfitting, 70
post-pruning, 70–71
pre-pruning, 70–71
prospect filtering, 72–73
prospect scoring data, 83–84, 84f
pruning, 70–71
regression trees, 64
scale normalization, 87
Shannon entropy, 71
splitting data, 73
supervised learning algorithm, 74
target variable, 64

Dendrogam, 221
Density-Based Spatial Clustering 

of Applications with Noise 
(DBSCAN) clustering

border points, 236, 236f
center-based density, 234, 235f
centroid methods, 242
core points, 236, 236f
data preparation, 238
density-clustering algorithm, 234
epsilon and MinPoints, 236
evaluation (optimal), 239
high-density and low-density 

space, 235
k-distribution chart, 237, 238f
noise points, 236, 236f
operator and parameters, 239
prototype-based clustering, 

220–221
varying densities, 237, 238f
visual output, 239–241, 241f

Density-clustering algorithm, 221, 
234

Descriptive statistics, 5, 37
characteristics, 41
multivariate exploration. See 

Multivariate exploration
univariate exploration. See 

Univariate exploration
Dimensional slicing, 5
Dimensions, 7

E
Ensemble learners, 14

AdaBoost model, 158–159,  
159f

aggregate hypothesis/model,  
148

Bagging meta model, 156–157, 
157f

Bagging operator, 155–156, 156f
boosting, 157–158
bootstrap aggregating/bagging, 

154–155
conditions, 151–152
drought prediction, 150b
error rate, 151
generalization error, 162
meta learning, 148–149
probability mass function, 150
Random Forest operator, 160–161, 

161f
voting, 153–154, 153f–155f

Ensemble modeling, 31–32
Euclidean distance, 102–105
Exclusive/strict partitioning clusters, 

219
Exploratory data analysis (EDA), 23. 

See also Data exploration

F
Feature selection, 26

attributes selection, 415–416
chi-square-based filtering

attribute weighting, 362, 363f
contingency table, 361–362, 

362t
expected frequency table, 

361–362, 362t
observed vs. expected 

frequencies, 362
rank attributes, 362, 363f

dimension reduction, 347, 370
filter type, 347
information theory
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Feature selection (Continued)
information exchange, 358
numeric Golf data set, 358–359, 

360f
motivation, 348b
multicollinearity, 348
multiple regression, 348
naïve Bayesian classifiers, 348
PCA, 349, 357f. See also Principal 

component analysis (PCA)
remove independent variables, 348
types, 347
wrapper type feature selection, 347

aggressive feature selection, 369, 
369f

Backward Elimination operator, 
364–365, 367f

computational resource 
consumption, 364

forward selection, 364
maximal relative decrease, 368
permissive feature selection, 

369, 369f
preset stopping criterion, 

369–370
regression model, 364, 364t
Split Validation operator, 368
squared correlation, 368

Frequent Pattern (FP)-Growth 
algorithm, 208

conditional FP-tree, 210, 210f
frequent paths, 207
modeling operator and parameters, 

212–213, 212f
results interpretation, 213–215, 

213f–214f
rules creation, 213
transactions list, 207, 207t
trimmed FP-tree, 209–210, 209f

Fuzzy/probabilistic clusters, 220

G
Gain curves, 264, 268f

H
Hamming distance, 102–105
Hierarchical clustering, 219, 221
Hypothesis-driven techniques, 7–8
Hypothesis testing, 5–6

I
Integer data type, 40
Iterative algorithms, 4–5

K
Keyword clustering

Crawl Web operator, 285
document-clustering problem, 284
Get Pages operator, 285
k-medoids operator, 286, 288f
medoid clustering, 284–285
process, 286, 289f
unstructured data, 285–286, 285f

k-means clustering
BIC, 232–234
centroid prototype approach, 234
centroids output, 231, 232f
cluster centroid/mean data object, 

223
Cluster Distance Performance 

operator, 231
cluster label, 229–230
Davies-Bouldin index, 229
empty clusters, 228–229
Euclidean distance, 224
evaluation parameter, 229
initiation, 228
labeled example set, 232
limitations, 232–234
local optimum, 227–228
new centroids

location, 226, 226f–227f
operator and parameters, 231
outliers, 229
performance criterion, 227–228
performance vector, 232, 233f
postprocessing, 229
prototype-based clustering and 

boundaries, 224, 225f
prototype data point, 223
sum of squared errors, 226
termination, 227
visual output, 232, 233f
Voronoi partitions, 223, 223f

K-nearest neighbors (k-NN), 334–335
eager learners, 99
forest type prediction, 100b
lazy learners, 99, 108

eager learners, 111
execution and interpretation, 

109f–110f, 110
modeling operator and 

parameters, 108–109
nonparametric method, 99
proximity measure

correlation similarity, 106
cosine similarity, 107

distance, 102–105, 104f
Jaccard similarity, 106–107
SMC, 106

unseen test record, 102

L
Linear regression

average error, 169
data separation, 172, 173f
dependent and independent 

variable, 167–168
feature selection option, 173, 174f
gradient descent, 169
“greedy” feature selection, 

174–175, 176f
linear regression operator, 173,  

174f
median price, 169
model validity, 180
null hypothesis, 177–178
p-values, ranking variables, 

177–178, 177f
RapidMiner, 170, 171t–172t
simple regression model, 167–168, 

168f
split validation operator, 172–173, 

173f
squared correlation, 177, 177f
unseen test data, 178–179, 179f
“wrapper” functions, 176

Linear regression model, 7
Local outlier factor (LOF) technique

Binominal operator, 342–344
data preparation, 342
Detect Outlier operator, 342
minimal points, 342
output, 342–344, 343f
RapidMiner process, 342, 343f
relative density, 341–342

Logistic regression, 1–2
binomial response variable, 191
confusion matrix, 189–190, 189f
credit scoring exercise, 188
data preparation, 188
likelihood function, 185
linear model, 182, 183f
logit function, 180–181, 181f, 184
MetaCost operator, 190–191, 190f
modeling operator and parameters, 

188, 189f
nonlinear curve, 182, 183f
nonlinear optimization 

techniques, 185
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odds ratio analysis, 186b
parameters, 184
“sigmoid” curve, 182
S-shaped curve, 182
SVM, 191, 191f
Titanic wreck, 186b, 187f

M
Machine learning, 4–5
Mahalanobis distance, 332
Manhattan distance, 102–105
Meaningful patterns extraction, 3
MetaCost operator, 190–191, 190f
Minkowski distance, 102–105
Mixture of Gaussians, 221
Model-based clustering, 221
Model evaluation

AUC, 263, 270, 272f, 273
classification performance metrics, 

264–267, 269f
confusion matrix/truth table, 257, 

259t
accuracy, 259
binary/binomial classification, 

258
definition, 258
evaluation measures,  

260, 260t
precision, 259
recall, 259
relevance, 259
sensitivity, 258–259
specificity, 259

data partitioning, 267
Direct marketing (DM),  

257b–258b
evaluation, 267
Generate Direct Mailing Data 

operator, 264–267
Lift Chart operator creation, 267
lift charts, 257, 270, 271f

by RapidMiner, 270, 272f
lift curves, 263–264, 266f, 268f
modeling operator and parameters, 

267
performance operator, 267
ROC curves, 257, 260, 262–263, 

262f, 266f, 270, 272f, 273
Split Data operator, 267
Split Validation operator, 267

Moore’s Law, 1–2
Multiple linear regression  

(MLR), 170

Multivariate exploration
central data point, 44
correlation

Anscombe’s quartet, 45, 46f
Cartesian coordinate, 45
Pearson correlation coefficient, 

44–45, 45f
quadratic functions, 45

Q
Queries, 6

R
Random Forest operator, 160–161, 

161f
RapidMiner

attributes, 375–376, 376f
data importing and exporting 

tools
CSV file, 377–379, 380f
data import wizard, 379, 

381f–382f
Import Configuration Wizard, 

377–379
data scaling and transformation 

tools, 371
data set, 375–376
data transformation tools

Append operator, 391–392
data type conversion operators, 

387
De-pivot operator, 388
dichotomization, 386
discretize operator, 387–388, 

389f
Join operator, 391–392
label variable, 386–387
logistic regression, 386–387
machine learning algorithms, 386
pivot tables, 388, 390f–391f

data types, 375–376
data visualization tools, 383

bivariate plots, 383–386
multivariate plots, 386
results, 382–383, 384f
Statistics, 383, 385f
univariate plots, 383

decision tree, 376, 377f
example set, 375–376
graphical user interface

RapidMiner 6.0, 372, 373f
views, 372, 374f

operator, 376

optimization tools
attributes upper bound and 

attributes lower bound 
parameters, 399

configuration, 397, 399f
disadvantage, 402
Generate Data operator, 397
genetic search optimization, 

402, 404f
grid search optimizer, 399–400, 

400f–401f
inner process, 397, 398f
mutation and cross-over, 402
“nested” operator, 396
Optimize operator, 396
Optimize parameters, 397
polynomial function, 396–397, 

397f
quadratic greedy search 

optimization, 402, 403f
process, 377, 378f
RapidMiner Studio GUI, 371
repository, 375, 375f
sampling and missing value tools

balanced accuracy, 394
balancing data sets, 392
bootstrapping, 395
imbalanced data set, 392, 393f
rebalance subprocess, 394, 395f
replace missing values, 395–396
unbalanced data, 392–394,  

394f
YALE, 371

Ratio data type, 40
Read Excel operator, 75, 76f
Receiver operator characteristic 

(ROC) curves, 257, 260, 
262–263, 262f, 266f, 270, 
272f, 273

Regression methods, 4–5, 30, 30f
feature selection methods, 

165–166
function fitting, 165–166
linear regression, 165, 174, 175f. 

See Linear regression
logistic regression, 165. See also 

Logistic regression
RapidMiner, 165–166

Rename operator, 77–79
Repeated Incremental Pruning to 

Produce Error Reduction 
(RIPPER), 91

Replace (Dictionary), 76–77, 78f
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Representative models, 3–4, 4f
Rule induction, 13

antecedent/condition, 89
class selection, 91
conjunct, 89
data preparation, 94–95
Decision Tree operator, 97, 98f
disjunct/classification rule, 89
exhaustive rule set, 90
Golf data set, 88, 90f
learn-one-rule, 93
modeling operator and 

parameters, 95, 96f
mutually exclusive set, 89–90, 

98–99
results interpretation, 95–97, 96f
RIPPER, 91
rule generation, 89f, 90–93, 92f
rule set, 89
sequential covering approach, 91
split conditions, 88
Tree to Rules operator, 97, 97f

S
Sample, Explore, Modify, Model, and 

Assess (SEMMA), 17–18
Self-organizing map (SOM), 14–15

centroid update, 244–246, 
245f–246f

country data set, 248f, 249
data preparation, 249
data transformation, 247, 247f
execution and interpretation, 251
grid space, 243
initialization, 244
location coordinates, 252, 254f
modeling operator and parameters, 

250–251, 250f
neural network, 243–244
termination, 246
topology specification, 244
visual model, 251–252, 252f–253f

Shannon entropy, 71
Simple matching coefficient (SMC), 

106
Simple regression model, 167–168, 

168f
Stochastic model, 7–8
Subject matter expertise, 4
Support vector machines (SVMs), 14, 

191, 191f
advantages, 148
boundary, 136, 136f

complex nonlinear dataset, 134
disadvantage, 147
hyperplane, 135, 135f
Kernel functions, 138
linearly separable, 136, 137f
margin, 136, 136f
penalty, 136, 136f
prediction accuracy, 144, 145f
quadratic polynomial, 138
Scatter 3D Color plot, 145, 146f
support vectors, 135
two-ring nonlinear problem, 

145–147, 147f

T
Term frequency-inverse document 

frequency (TF-IDF), 277–279
Text mining

clusters, 284
customer relationship 

management software, 276
data warehousing and business 

intelligence, 276
IBM’s Watson program, 276b
key features identification, 

296–297, 297f
keyword clustering

Crawl Web operator, 285
data preparation, 286, 287f
document-clustering problem, 

284
Get Pages operator, 285
k-medoids operator, 286, 288f
medoid clustering, 284–285
unstructured data, 285–286, 

285f
website keyword clustering 

process, 286, 289f
Lexical substitution, 280–282
meaningful n-grams, 283, 283f
preprocessing operator, 293, 295f
preprocessing steps, 283, 283t
preprocessing text data, 293, 295f
Read Excel operator, 293, 294f
similarity mapping, 279
stemming, 282–283
stopword filtering, 280, 282f
stopwords, 280
term filtering, 280–282
term frequencies, 281t
test data preparation, 299, 300f
TF–IDF, 277–279
token, 279

tokenization, 279–280
trained models, 299–302, 

300f–301f
unstructured data, 288–293, 

290t–292t
X-Validation operator, 297–299, 

298f, 299t
Time series forecasting, 308f

autocorrelation, 306
cross-sectional data, 305, 306f
data-driven forecasting methods, 

305–306
decomposition, 306–307
descriptive modeling, 306–307
forecasting demand, 307f, 307b
Holt’s two-parameter exponential 

smoothing, 311–312
Holt-winters’ three-parameter 

exponential smoothing, 
312–313

model-driven forecasting methods, 
306, 314f

autoregression models and 
ARIMA, 316t, 317–318

independent variables, 321
Inner level process, 323–324, 

325f
label variable, 320, 322f
limit time box, 323–324
linear regression, 313–317, 315f, 

316t
polynomial regression, 313–314, 

315f
prediction horizon controls, 

318–319
regression equation, 321–322
set iteration macro, 323–324
Set Role operator, 319–320
step size, 320
Windowing operators, 318–320, 

320f
windowing transformation, 

317f–319f, 318, 320, 321f
Window size, 320

multiple linear regression model, 
305

naïve forecast. See Naïve forecast
neural network model, 305
notation system, 308
predictive modeling, 306–307
predictor variables, 305
supervised model, 305

Trend,-seasonality, 311, 312f
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U
Univariate exploration, 41, 42t

descriptive statistics, 43, 43f
deviation, 43
mean, 42
median, 42
mode, 42
range, 43
standard deviation, 43
variance, 43

Unsupervised process, 413

V
Vote meta modeling operator, 

153–154, 154f

W
Wrapper type feature selection, 

15–16, 347
aggressive feature selection, 369, 

369f
Backward Elimination operator, 

364–365, 367f

forward selection, 364
maximal relative decrease, 368
multiple regression model, 365
permissive feature selection, 369, 

369f
preset stopping criterion, 369–370
Split Validation operator, 368

Y
Yet Another Learning Environment 

(YALE), 371
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